ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leaddle0 Unicode version

Theorem leaddle0 8331
Description: The sum of a real number and a second real number is less then the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018.)
Assertion
Ref Expression
leaddle0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <_  A  <->  B  <_  0 ) )

Proof of Theorem leaddle0
StepHypRef Expression
1 leaddsub2 8293 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( A  +  B
)  <_  A  <->  B  <_  ( A  -  A ) ) )
213anidm13 1275 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <_  A  <->  B  <_  ( A  -  A ) ) )
3 recn 7844 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
43subidd 8153 . . . 4  |-  ( A  e.  RR  ->  ( A  -  A )  =  0 )
54adantr 274 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  A
)  =  0 )
65breq2d 3973 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  ( A  -  A )  <->  B  <_  0 ) )
72, 6bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <_  A  <->  B  <_  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   class class class wbr 3961  (class class class)co 5814   RRcr 7710   0cc0 7711    + caddc 7714    <_ cle 7892    - cmin 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028
This theorem is referenced by:  fzpreddisj  9951
  Copyright terms: Public domain W3C validator