ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsym Unicode version

Theorem ltnsym 7978
Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ltnsym  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )

Proof of Theorem ltnsym
StepHypRef Expression
1 lttr 7966 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( A  <  B  /\  B  <  A )  ->  A  <  A
) )
213anidm13 1285 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  /\  B  <  A )  ->  A  <  A ) )
32expd 256 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( B  <  A  ->  A  <  A ) ) )
4 ltnr 7969 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
54adantr 274 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  <  A
)
6 con3 632 . 2  |-  ( ( B  <  A  ->  A  <  A )  -> 
( -.  A  < 
A  ->  -.  B  <  A ) )
73, 5, 6syl6ci 1432 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2135   class class class wbr 3979   RRcr 7746    < clt 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-pre-ltirr 7859  ax-pre-lttrn 7861
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-xp 4607  df-pnf 7929  df-mnf 7930  df-ltxr 7932
This theorem is referenced by:  ltle  7980  ltnsymi  7992  elnnz  9195  zdclt  9262  xrltnsym  9723
  Copyright terms: Public domain W3C validator