ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsym Unicode version

Theorem ltnsym 8112
Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ltnsym  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )

Proof of Theorem ltnsym
StepHypRef Expression
1 lttr 8100 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( A  <  B  /\  B  <  A )  ->  A  <  A
) )
213anidm13 1307 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  /\  B  <  A )  ->  A  <  A ) )
32expd 258 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( B  <  A  ->  A  <  A ) ) )
4 ltnr 8103 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
54adantr 276 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  <  A
)
6 con3 643 . 2  |-  ( ( B  <  A  ->  A  <  A )  -> 
( -.  A  < 
A  ->  -.  B  <  A ) )
73, 5, 6syl6ci 1456 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  ltle  8114  ltnsymi  8126  elnnz  9336  zdclt  9403  xrltnsym  9868  qdclt  10335  mulgnegnn  13262  lgsval4a  15263
  Copyright terms: Public domain W3C validator