ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsym Unicode version

Theorem ltnsym 7874
Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ltnsym  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )

Proof of Theorem ltnsym
StepHypRef Expression
1 lttr 7862 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( A  <  B  /\  B  <  A )  ->  A  <  A
) )
213anidm13 1275 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  /\  B  <  A )  ->  A  <  A ) )
32expd 256 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( B  <  A  ->  A  <  A ) ) )
4 ltnr 7865 . . 3  |-  ( A  e.  RR  ->  -.  A  <  A )
54adantr 274 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  <  A
)
6 con3 632 . 2  |-  ( ( B  <  A  ->  A  <  A )  -> 
( -.  A  < 
A  ->  -.  B  <  A ) )
73, 5, 6syl6ci 1422 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 1481   class class class wbr 3937   RRcr 7643    < clt 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756  ax-pre-lttrn 7758
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-pnf 7826  df-mnf 7827  df-ltxr 7829
This theorem is referenced by:  ltle  7875  ltnsymi  7887  elnnz  9088  zdclt  9152  xrltnsym  9609
  Copyright terms: Public domain W3C validator