ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem14 Unicode version

Theorem pythagtriplem14 12415
Description: Lemma for pythagtrip 12421. Calculate the square of  N. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
21oveq1i 5928 . 2  |-  ( N ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )
3 simp13 1031 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
4 simp12 1030 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
53, 4nnaddcld 9030 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  NN )
65nnrpd 9760 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR+ )
76rpsqrtcld 11302 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  RR+ )
87rpcnd 9764 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
93nnred 8995 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  RR )
104nnred 8995 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  RR )
119, 10resubcld 8400 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
12 pythagtriplem10 12407 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
13123adant3 1019 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
1411, 13elrpd 9759 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR+ )
1514rpsqrtcld 11302 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  RR+ )
1615rpcnd 9764 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
178, 16subcld 8330 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
18 2cn 9053 . . . . 5  |-  2  e.  CC
1918a1i 9 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  2  e.  CC )
20 2ap0 9075 . . . . 5  |-  2 #  0
2120a1i 9 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  2 #  0 )
2217, 19, 21sqdivapd 10757 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) ) )
2318sqvali 10690 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
2423oveq2i 5929 . . . 4  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2 ^ 2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) )
2517sqcld 10742 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  e.  CC )
2625, 19, 19, 21, 21divdivap1d 8841 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  ( 2  x.  2 ) ) )
27 binom2sub 10724 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) ) ^ 2 )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  +  ( ( sqr `  ( C  -  B ) ) ^ 2 ) ) )
288, 16, 27syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) ) )
29 nnre 8989 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  C  e.  RR )
30 nnre 8989 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  RR )
31 readdcl 7998 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
3229, 30, 31syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  RR )
33323adant1 1017 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
34333ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
3534recnd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  CC )
36 resubcl 8283 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
3729, 30, 36syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  RR )
38373adant1 1017 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
39383ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
4039recnd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  CC )
418, 16mulcld 8040 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )
42 mulcl 7999 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
4318, 41, 42sylancr 414 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
4435, 40, 43addsubd 8351 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( ( C  +  B )  -  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) ) )  +  ( C  -  B ) ) )
453nncnd 8996 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
46 simp11 1029 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  NN )
4746nncnd 8996 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  CC )
48 subdi 8404 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
4918, 45, 47, 48mp3an2i 1353 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
50 nncn 8990 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  C  e.  CC )
51 nncn 8990 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  CC )
52 ppncan 8261 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
53523anidm13 1307 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
54 2times 9110 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
5554adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
5653, 55eqtr4d 2229 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
5750, 51, 56syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
58573adant1 1017 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
59583ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
604nncnd 8996 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
61 subsq 10717 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
6245, 60, 61syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
63 oveq1 5925 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
64633ad2ant2 1021 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
65 nncn 8990 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  NN  ->  A  e.  CC )
6665sqcld 10742 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
67663ad2ant1 1020 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
6851sqcld 10742 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
69683ad2ant2 1021 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
7067, 69pncand 8331 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
71703ad2ant1 1020 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7264, 71eqtr3d 2228 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7362, 72eqtr3d 2228 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  x.  ( C  -  B ) )  =  ( A ^
2 ) )
7473fveq2d 5558 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( sqr `  ( A ^ 2 ) ) )
7529adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
7630adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
77 nngt0 9007 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  e.  NN  ->  0  <  C )
7877adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
79 nngt0 9007 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  NN  ->  0  <  B )
8079adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
8175, 76, 78, 80addgt0d 8540 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  +  B ) )
82 0re 8019 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
83 ltle 8107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
8482, 83mpan 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
8532, 81, 84sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B ) )
86853adant1 1017 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B
) )
87863ad2ant1 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
88 ltle 8107 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
8982, 88mpan 424 . . . . . . . . . . . . . . . 16  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
9039, 13, 89sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
9134, 87, 39, 90sqrtmuld 11313 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) )
92 nnre 8989 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  A  e.  RR )
93923ad2ant1 1020 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
94933ad2ant1 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  RR )
95 nnnn0 9247 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  NN0 )
9695nn0ge0d 9296 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  0  <_  A )
97963ad2ant1 1020 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  A )
98973ad2ant1 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  A )
9994, 98sqrtsqd 11309 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( A ^
2 ) )  =  A )
10074, 91, 993eqtr3d 2234 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  =  A )
101100oveq2d 5934 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  =  ( 2  x.  A
) )
10259, 101oveq12d 5936 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( 2  x.  C
)  -  ( 2  x.  A ) ) )
10349, 102eqtr4d 2229 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
104 resqrtth 11175 . . . . . . . . . . . . 13  |-  ( ( ( C  +  B
)  e.  RR  /\  0  <_  ( C  +  B ) )  -> 
( ( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
10534, 87, 104syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
106105oveq1d 5933 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  =  ( ( C  +  B )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
107 resqrtth 11175 . . . . . . . . . . . 12  |-  ( ( ( C  -  B
)  e.  RR  /\  0  <_  ( C  -  B ) )  -> 
( ( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
10839, 90, 107syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
109106, 108oveq12d 5936 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( ( ( C  +  B
)  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( C  -  B ) ) )
11044, 103, 1093eqtr4rd 2237 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( 2  x.  ( C  -  A ) ) )
11128, 110eqtrd 2226 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( 2  x.  ( C  -  A ) ) )
112111oveq1d 5933 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( ( 2  x.  ( C  -  A )
)  /  2 ) )
113 subcl 8218 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
11450, 65, 113syl2anr 290 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( C  -  A
)  e.  CC )
1151143adant2 1018 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  A )  e.  CC )
1161153ad2ant1 1020 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  A )  e.  CC )
117116, 19, 21divcanap3d 8814 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
118112, 117eqtrd 2226 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( C  -  A ) )
119118oveq1d 5933 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( C  -  A )  /  2
) )
12026, 119eqtr3d 2228 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2  x.  2 ) )  =  ( ( C  -  A
)  /  2 ) )
12124, 120eqtrid 2238 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) )  =  ( ( C  -  A
)  /  2 ) )
12222, 121eqtrd 2226 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( C  -  A
)  /  2 ) )
1232, 122eqtrid 2238 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   ^cexp 10609   sqrcsqrt 11140    || cdvds 11930    gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-rsqrt 11142
This theorem is referenced by:  pythagtriplem15  12416  pythagtriplem17  12418
  Copyright terms: Public domain W3C validator