ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm12 Unicode version

Theorem 3anidm12 1306
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1  |-  ( (
ph  /\  ph  /\  ps )  ->  ch )
Assertion
Ref Expression
3anidm12  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3  |-  ( (
ph  /\  ph  /\  ps )  ->  ch )
213expib 1208 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  ->  ch )
)
32anabsi5 579 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anidm13  1307  syl2an3an  1309  fovcl  5997  prarloclemarch2  7436  nq02m  7482  recexprlem1ssl  7650  recexprlem1ssu  7651  nncan  8204  dividap  8676  modqid0  10368  sqdividap  10603  subsq  10645  retanclap  11748  tannegap  11754  gcd0id  11998  coprm  12162
  Copyright terms: Public domain W3C validator