| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm12 | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 |
|
| Ref | Expression |
|---|---|
| 3anidm12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 |
. . 3
| |
| 2 | 1 | 3expib 1209 |
. 2
|
| 3 | 2 | anabsi5 579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anidm13 1309 syl2an3an 1311 fovcl 6053 prarloclemarch2 7534 nq02m 7580 recexprlem1ssl 7748 recexprlem1ssu 7749 nncan 8303 dividap 8776 modqid0 10497 sqdividap 10751 subsq 10793 retanclap 12066 tannegap 12072 gcd0id 12333 coprm 12499 |
| Copyright terms: Public domain | W3C validator |