ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm12 Unicode version

Theorem 3anidm12 1329
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1  |-  ( (
ph  /\  ph  /\  ps )  ->  ch )
Assertion
Ref Expression
3anidm12  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3  |-  ( (
ph  /\  ph  /\  ps )  ->  ch )
213expib 1230 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  ->  ch )
)
32anabsi5 579 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3anidm13  1330  syl2an3an  1332  fovcl  6110  prarloclemarch2  7606  nq02m  7652  recexprlem1ssl  7820  recexprlem1ssu  7821  nncan  8375  dividap  8848  modqid0  10572  sqdividap  10826  subsq  10868  retanclap  12233  tannegap  12239  gcd0id  12500  coprm  12666
  Copyright terms: Public domain W3C validator