| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm12 | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| Ref | Expression |
|---|---|
| 3anidm12.1 |
|
| Ref | Expression |
|---|---|
| 3anidm12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm12.1 |
. . 3
| |
| 2 | 1 | 3expib 1230 |
. 2
|
| 3 | 2 | anabsi5 579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anidm13 1330 syl2an3an 1332 fovcl 6110 prarloclemarch2 7606 nq02m 7652 recexprlem1ssl 7820 recexprlem1ssu 7821 nncan 8375 dividap 8848 modqid0 10572 sqdividap 10826 subsq 10868 retanclap 12233 tannegap 12239 gcd0id 12500 coprm 12666 |
| Copyright terms: Public domain | W3C validator |