| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem4 | Unicode version | ||
| Description: Lemma for pythagtrip 12650. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1029 |
. . 3
| |
| 2 | nnz 9398 |
. . . . . . . . . . . . 13
| |
| 3 | nnz 9398 |
. . . . . . . . . . . . 13
| |
| 4 | zsubcl 9420 |
. . . . . . . . . . . . 13
| |
| 5 | 2, 3, 4 | syl2anr 290 |
. . . . . . . . . . . 12
|
| 6 | 5 | 3adant1 1018 |
. . . . . . . . . . 11
|
| 7 | 6 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 8 | simp13 1032 |
. . . . . . . . . . . 12
| |
| 9 | simp12 1031 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | nnaddcld 9091 |
. . . . . . . . . . 11
|
| 11 | 10 | nnzd 9501 |
. . . . . . . . . 10
|
| 12 | gcddvds 12328 |
. . . . . . . . . 10
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . . . . 9
|
| 14 | 13 | simprd 114 |
. . . . . . . 8
|
| 15 | breq1 4050 |
. . . . . . . . 9
| |
| 16 | 15 | biimpd 144 |
. . . . . . . 8
|
| 17 | 14, 16 | mpan9 281 |
. . . . . . 7
|
| 18 | 2z 9407 |
. . . . . . . 8
| |
| 19 | simpl13 1077 |
. . . . . . . . . 10
| |
| 20 | 19 | nnzd 9501 |
. . . . . . . . 9
|
| 21 | simpl12 1076 |
. . . . . . . . . 10
| |
| 22 | 21 | nnzd 9501 |
. . . . . . . . 9
|
| 23 | 20, 22 | zaddcld 9506 |
. . . . . . . 8
|
| 24 | 20, 22 | zsubcld 9507 |
. . . . . . . 8
|
| 25 | dvdsmultr1 12186 |
. . . . . . . 8
| |
| 26 | 18, 23, 24, 25 | mp3an2i 1355 |
. . . . . . 7
|
| 27 | 17, 26 | mpd 13 |
. . . . . 6
|
| 28 | 19 | nncnd 9057 |
. . . . . . 7
|
| 29 | 21 | nncnd 9057 |
. . . . . . 7
|
| 30 | subsq 10798 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 27, 31 | breqtrrd 4075 |
. . . . 5
|
| 33 | simpl2 1004 |
. . . . . . 7
| |
| 34 | 33 | oveq1d 5966 |
. . . . . 6
|
| 35 | simpl11 1075 |
. . . . . . . . 9
| |
| 36 | 35 | nnsqcld 10846 |
. . . . . . . 8
|
| 37 | 36 | nncnd 9057 |
. . . . . . 7
|
| 38 | 21 | nnsqcld 10846 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9057 |
. . . . . . 7
|
| 40 | 37, 39 | pncand 8391 |
. . . . . 6
|
| 41 | 34, 40 | eqtr3d 2241 |
. . . . 5
|
| 42 | 32, 41 | breqtrd 4073 |
. . . 4
|
| 43 | nnz 9398 |
. . . . . . . 8
| |
| 44 | 43 | 3ad2ant1 1021 |
. . . . . . 7
|
| 45 | 44 | 3ad2ant1 1021 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 2prm 12493 |
. . . . . 6
| |
| 48 | 2nn 9205 |
. . . . . 6
| |
| 49 | prmdvdsexp 12514 |
. . . . . 6
| |
| 50 | 47, 48, 49 | mp3an13 1341 |
. . . . 5
|
| 51 | 46, 50 | syl 14 |
. . . 4
|
| 52 | 42, 51 | mpbid 147 |
. . 3
|
| 53 | 1, 52 | mtand 667 |
. 2
|
| 54 | neg1z 9411 |
. . . . . . . 8
| |
| 55 | gcdaddm 12349 |
. . . . . . . 8
| |
| 56 | 54, 7, 11, 55 | mp3an2i 1355 |
. . . . . . 7
|
| 57 | 8 | nncnd 9057 |
. . . . . . . 8
|
| 58 | 9 | nncnd 9057 |
. . . . . . . 8
|
| 59 | pnncan 8320 |
. . . . . . . . . . 11
| |
| 60 | 59 | 3anidm23 1310 |
. . . . . . . . . 10
|
| 61 | subcl 8278 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | mulm1d 8489 |
. . . . . . . . . . . 12
|
| 63 | 62 | oveq2d 5967 |
. . . . . . . . . . 11
|
| 64 | addcl 8057 |
. . . . . . . . . . . 12
| |
| 65 | 64, 61 | negsubd 8396 |
. . . . . . . . . . 11
|
| 66 | 63, 65 | eqtrd 2239 |
. . . . . . . . . 10
|
| 67 | 2times 9171 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 60, 66, 68 | 3eqtr4d 2249 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 5967 |
. . . . . . . 8
|
| 71 | 57, 58, 70 | syl2anc 411 |
. . . . . . 7
|
| 72 | 56, 71 | eqtrd 2239 |
. . . . . 6
|
| 73 | 9 | nnzd 9501 |
. . . . . . . . 9
|
| 74 | zmulcl 9433 |
. . . . . . . . 9
| |
| 75 | 18, 73, 74 | sylancr 414 |
. . . . . . . 8
|
| 76 | gcddvds 12328 |
. . . . . . . 8
| |
| 77 | 7, 75, 76 | syl2anc 411 |
. . . . . . 7
|
| 78 | 77 | simprd 114 |
. . . . . 6
|
| 79 | 72, 78 | eqbrtrd 4069 |
. . . . 5
|
| 80 | 1z 9405 |
. . . . . . . 8
| |
| 81 | gcdaddm 12349 |
. . . . . . . 8
| |
| 82 | 80, 7, 11, 81 | mp3an2i 1355 |
. . . . . . 7
|
| 83 | ppncan 8321 |
. . . . . . . . . . 11
| |
| 84 | 83 | 3anidm13 1309 |
. . . . . . . . . 10
|
| 85 | 61 | mulid2d 8098 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 5967 |
. . . . . . . . . 10
|
| 87 | 2times 9171 |
. . . . . . . . . . 11
| |
| 88 | 87 | adantr 276 |
. . . . . . . . . 10
|
| 89 | 84, 86, 88 | 3eqtr4d 2249 |
. . . . . . . . 9
|
| 90 | 57, 58, 89 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 90 | oveq2d 5967 |
. . . . . . 7
|
| 92 | 82, 91 | eqtrd 2239 |
. . . . . 6
|
| 93 | 8 | nnzd 9501 |
. . . . . . . . 9
|
| 94 | zmulcl 9433 |
. . . . . . . . 9
| |
| 95 | 18, 93, 94 | sylancr 414 |
. . . . . . . 8
|
| 96 | gcddvds 12328 |
. . . . . . . 8
| |
| 97 | 7, 95, 96 | syl2anc 411 |
. . . . . . 7
|
| 98 | 97 | simprd 114 |
. . . . . 6
|
| 99 | 92, 98 | eqbrtrd 4069 |
. . . . 5
|
| 100 | nnaddcl 9063 |
. . . . . . . . . . . . . 14
| |
| 101 | 100 | nnne0d 9088 |
. . . . . . . . . . . . 13
|
| 102 | 101 | ancoms 268 |
. . . . . . . . . . . 12
|
| 103 | 102 | 3adant1 1018 |
. . . . . . . . . . 11
|
| 104 | 103 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 105 | 104 | neneqd 2398 |
. . . . . . . . 9
|
| 106 | 105 | intnand 933 |
. . . . . . . 8
|
| 107 | gcdn0cl 12327 |
. . . . . . . 8
| |
| 108 | 7, 11, 106, 107 | syl21anc 1249 |
. . . . . . 7
|
| 109 | 108 | nnzd 9501 |
. . . . . 6
|
| 110 | dvdsgcd 12377 |
. . . . . 6
| |
| 111 | 109, 75, 95, 110 | syl3anc 1250 |
. . . . 5
|
| 112 | 79, 99, 111 | mp2and 433 |
. . . 4
|
| 113 | 2nn0 9319 |
. . . . . 6
| |
| 114 | mulgcd 12381 |
. . . . . 6
| |
| 115 | 113, 73, 93, 114 | mp3an2i 1355 |
. . . . 5
|
| 116 | pythagtriplem3 12634 |
. . . . . . 7
| |
| 117 | 116 | oveq2d 5967 |
. . . . . 6
|
| 118 | 2t1e2 9197 |
. . . . . 6
| |
| 119 | 117, 118 | eqtrdi 2255 |
. . . . 5
|
| 120 | 115, 119 | eqtrd 2239 |
. . . 4
|
| 121 | 112, 120 | breqtrd 4073 |
. . 3
|
| 122 | dvdsprime 12488 |
. . . 4
| |
| 123 | 47, 108, 122 | sylancr 414 |
. . 3
|
| 124 | 121, 123 | mpbid 147 |
. 2
|
| 125 | orel1 727 |
. 2
| |
| 126 | 53, 124, 125 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-er 6627 df-en 6835 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 df-prm 12474 |
| This theorem is referenced by: pythagtriplem6 12637 pythagtriplem7 12638 |
| Copyright terms: Public domain | W3C validator |