ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem4 Unicode version

Theorem pythagtriplem4 12799
Description: Lemma for pythagtrip 12814. Show that  C  -  B and  C  +  B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1050 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  A )
2 nnz 9473 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  ZZ )
3 nnz 9473 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
4 zsubcl 9495 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  -  B
)  e.  ZZ )
52, 3, 4syl2anr 290 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  ZZ )
653adant1 1039 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  ZZ )
763ad2ant1 1042 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  ZZ )
8 simp13 1053 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
9 simp12 1052 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
108, 9nnaddcld 9166 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  NN )
1110nnzd 9576 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  ZZ )
12 gcddvds 12492 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( C  +  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  ( C  +  B )
) )
137, 11, 12syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  ( C  -  B )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) ) )
1413simprd 114 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) )
15 breq1 4086 . . . . . . . . 9  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  <->  2  ||  ( C  +  B )
) )
1615biimpd 144 . . . . . . . 8  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  ->  2  ||  ( C  +  B
) ) )
1714, 16mpan9 281 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( C  +  B
) )
18 2z 9482 . . . . . . . 8  |-  2  e.  ZZ
19 simpl13 1098 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  NN )
2019nnzd 9576 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  ZZ )
21 simpl12 1097 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  NN )
2221nnzd 9576 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  ZZ )
2320, 22zaddcld 9581 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  +  B )  e.  ZZ )
2420, 22zsubcld 9582 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  -  B )  e.  ZZ )
25 dvdsmultr1 12350 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  ( C  -  B
)  e.  ZZ )  ->  ( 2  ||  ( C  +  B
)  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2618, 23, 24, 25mp3an2i 1376 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( C  +  B )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2717, 26mpd 13 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) )
2819nncnd 9132 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  CC )
2921nncnd 9132 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  CC )
30 subsq 10876 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3128, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3227, 31breqtrrd 4111 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C ^
2 )  -  ( B ^ 2 ) ) )
33 simpl2 1025 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
3433oveq1d 6022 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
35 simpl11 1096 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  NN )
3635nnsqcld 10924 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  NN )
3736nncnd 9132 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  CC )
3821nnsqcld 10924 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  NN )
3938nncnd 9132 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  CC )
4037, 39pncand 8466 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4134, 40eqtr3d 2264 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4232, 41breqtrd 4109 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( A ^ 2 ) )
43 nnz 9473 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
44433ad2ant1 1042 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
45443ad2ant1 1042 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  ZZ )
4645adantr 276 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  ZZ )
47 2prm 12657 . . . . . 6  |-  2  e.  Prime
48 2nn 9280 . . . . . 6  |-  2  e.  NN
49 prmdvdsexp 12678 . . . . . 6  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  2  e.  NN )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5047, 48, 49mp3an13 1362 . . . . 5  |-  ( A  e.  ZZ  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5146, 50syl 14 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5242, 51mpbid 147 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  A )
531, 52mtand 669 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2 )
54 neg1z 9486 . . . . . . . 8  |-  -u 1  e.  ZZ
55 gcdaddm 12513 . . . . . . . 8  |-  ( (
-u 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) ) )
5654, 7, 11, 55mp3an2i 1376 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) ) )
578nncnd 9132 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
589nncnd 9132 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
59 pnncan 8395 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( B  +  B ) )
60593anidm23 1331 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( B  +  B ) )
61 subcl 8353 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
6261mulm1d 8564 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( C  -  B
) )  =  -u ( C  -  B
) )
6362oveq2d 6023 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  +  -u ( C  -  B )
) )
64 addcl 8132 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
6564, 61negsubd 8471 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  -u ( C  -  B
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
6663, 65eqtrd 2262 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
67 2times 9246 . . . . . . . . . . 11  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
6867adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
6960, 66, 683eqtr4d 2272 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( 2  x.  B ) )
7069oveq2d 6023 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) )  =  ( ( C  -  B
)  gcd  ( 2  x.  B ) ) )
7157, 58, 70syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  B
) ) )
7256, 71eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  B ) ) )
739nnzd 9576 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  ZZ )
74 zmulcl 9508 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  ZZ )
7518, 73, 74sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  B )  e.  ZZ )
76 gcddvds 12492 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  B
) )  ||  (
2  x.  B ) ) )
777, 75, 76syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( 2  x.  B ) ) )
7877simprd 114 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  B ) ) 
||  ( 2  x.  B ) )
7972, 78eqbrtrd 4105 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
) )
80 1z 9480 . . . . . . . 8  |-  1  e.  ZZ
81 gcdaddm 12513 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) ) )
8280, 7, 11, 81mp3an2i 1376 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) ) ) )
83 ppncan 8396 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
84833anidm13 1330 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
8561mulid2d 8173 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( C  -  B )
)  =  ( C  -  B ) )
8685oveq2d 6023 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( ( C  +  B )  +  ( C  -  B ) ) )
87 2times 9246 . . . . . . . . . . 11  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
8887adantr 276 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
8984, 86, 883eqtr4d 2272 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9057, 58, 89syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9190oveq2d 6023 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  C
) ) )
9282, 91eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  C ) ) )
938nnzd 9576 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  ZZ )
94 zmulcl 9508 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  C  e.  ZZ )  ->  ( 2  x.  C
)  e.  ZZ )
9518, 93, 94sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  C )  e.  ZZ )
96 gcddvds 12492 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  C ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  C
) )  ||  (
2  x.  C ) ) )
977, 95, 96syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( 2  x.  C ) ) )
9897simprd 114 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  C ) ) 
||  ( 2  x.  C ) )
9992, 98eqbrtrd 4105 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  C
) )
100 nnaddcl 9138 . . . . . . . . . . . . . 14  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  e.  NN )
101100nnne0d 9163 . . . . . . . . . . . . 13  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  =/=  0 )
102101ancoms 268 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  =/=  0 )
1031023adant1 1039 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  =/=  0 )
1041033ad2ant1 1042 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  =/=  0 )
105104neneqd 2421 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( C  +  B
)  =  0 )
106105intnand 936 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )
107 gcdn0cl 12491 . . . . . . . 8  |-  ( ( ( ( C  -  B )  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  /\  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  e.  NN )
1087, 11, 106, 107syl21anc 1270 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )
109108nnzd 9576 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  ZZ )
110 dvdsgcd 12541 . . . . . 6  |-  ( ( ( ( C  -  B )  gcd  ( C  +  B )
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( ( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
111109, 75, 95, 110syl3anc 1271 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  B )  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
11279, 99, 111mp2and 433 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( ( 2  x.  B )  gcd  (
2  x.  C ) ) )
113 2nn0 9394 . . . . . 6  |-  2  e.  NN0
114 mulgcd 12545 . . . . . 6  |-  ( ( 2  e.  NN0  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
115113, 73, 93, 114mp3an2i 1376 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
116 pythagtriplem3 12798 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  =  1 )
117116oveq2d 6023 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  ( 2  x.  1 ) )
118 2t1e2 9272 . . . . . 6  |-  ( 2  x.  1 )  =  2
119117, 118eqtrdi 2278 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  2 )
120115, 119eqtrd 2262 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  2 )
121112, 120breqtrd 4109 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  2 )
122 dvdsprime 12652 . . . 4  |-  ( ( 2  e.  Prime  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
12347, 108, 122sylancr 414 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
124121, 123mpbid 147 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B )
)  =  1 ) )
125 orel1 730 . 2  |-  ( -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2  -> 
( ( ( ( C  -  B )  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 ) )
12653, 124, 125sylc 62 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012    - cmin 8325   -ucneg 8326   NNcn 9118   2c2 9169   NN0cn0 9377   ZZcz 9454   ^cexp 10768    || cdvds 12306    gcd cgcd 12482   Primecprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638
This theorem is referenced by:  pythagtriplem6  12801  pythagtriplem7  12802
  Copyright terms: Public domain W3C validator