| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem4 | Unicode version | ||
| Description: Lemma for pythagtrip 12452. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1028 |
. . 3
| |
| 2 | nnz 9345 |
. . . . . . . . . . . . 13
| |
| 3 | nnz 9345 |
. . . . . . . . . . . . 13
| |
| 4 | zsubcl 9367 |
. . . . . . . . . . . . 13
| |
| 5 | 2, 3, 4 | syl2anr 290 |
. . . . . . . . . . . 12
|
| 6 | 5 | 3adant1 1017 |
. . . . . . . . . . 11
|
| 7 | 6 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 8 | simp13 1031 |
. . . . . . . . . . . 12
| |
| 9 | simp12 1030 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | nnaddcld 9038 |
. . . . . . . . . . 11
|
| 11 | 10 | nnzd 9447 |
. . . . . . . . . 10
|
| 12 | gcddvds 12130 |
. . . . . . . . . 10
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . . . . 9
|
| 14 | 13 | simprd 114 |
. . . . . . . 8
|
| 15 | breq1 4036 |
. . . . . . . . 9
| |
| 16 | 15 | biimpd 144 |
. . . . . . . 8
|
| 17 | 14, 16 | mpan9 281 |
. . . . . . 7
|
| 18 | 2z 9354 |
. . . . . . . 8
| |
| 19 | simpl13 1076 |
. . . . . . . . . 10
| |
| 20 | 19 | nnzd 9447 |
. . . . . . . . 9
|
| 21 | simpl12 1075 |
. . . . . . . . . 10
| |
| 22 | 21 | nnzd 9447 |
. . . . . . . . 9
|
| 23 | 20, 22 | zaddcld 9452 |
. . . . . . . 8
|
| 24 | 20, 22 | zsubcld 9453 |
. . . . . . . 8
|
| 25 | dvdsmultr1 11996 |
. . . . . . . 8
| |
| 26 | 18, 23, 24, 25 | mp3an2i 1353 |
. . . . . . 7
|
| 27 | 17, 26 | mpd 13 |
. . . . . 6
|
| 28 | 19 | nncnd 9004 |
. . . . . . 7
|
| 29 | 21 | nncnd 9004 |
. . . . . . 7
|
| 30 | subsq 10738 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 27, 31 | breqtrrd 4061 |
. . . . 5
|
| 33 | simpl2 1003 |
. . . . . . 7
| |
| 34 | 33 | oveq1d 5937 |
. . . . . 6
|
| 35 | simpl11 1074 |
. . . . . . . . 9
| |
| 36 | 35 | nnsqcld 10786 |
. . . . . . . 8
|
| 37 | 36 | nncnd 9004 |
. . . . . . 7
|
| 38 | 21 | nnsqcld 10786 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9004 |
. . . . . . 7
|
| 40 | 37, 39 | pncand 8338 |
. . . . . 6
|
| 41 | 34, 40 | eqtr3d 2231 |
. . . . 5
|
| 42 | 32, 41 | breqtrd 4059 |
. . . 4
|
| 43 | nnz 9345 |
. . . . . . . 8
| |
| 44 | 43 | 3ad2ant1 1020 |
. . . . . . 7
|
| 45 | 44 | 3ad2ant1 1020 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 2prm 12295 |
. . . . . 6
| |
| 48 | 2nn 9152 |
. . . . . 6
| |
| 49 | prmdvdsexp 12316 |
. . . . . 6
| |
| 50 | 47, 48, 49 | mp3an13 1339 |
. . . . 5
|
| 51 | 46, 50 | syl 14 |
. . . 4
|
| 52 | 42, 51 | mpbid 147 |
. . 3
|
| 53 | 1, 52 | mtand 666 |
. 2
|
| 54 | neg1z 9358 |
. . . . . . . 8
| |
| 55 | gcdaddm 12151 |
. . . . . . . 8
| |
| 56 | 54, 7, 11, 55 | mp3an2i 1353 |
. . . . . . 7
|
| 57 | 8 | nncnd 9004 |
. . . . . . . 8
|
| 58 | 9 | nncnd 9004 |
. . . . . . . 8
|
| 59 | pnncan 8267 |
. . . . . . . . . . 11
| |
| 60 | 59 | 3anidm23 1308 |
. . . . . . . . . 10
|
| 61 | subcl 8225 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | mulm1d 8436 |
. . . . . . . . . . . 12
|
| 63 | 62 | oveq2d 5938 |
. . . . . . . . . . 11
|
| 64 | addcl 8004 |
. . . . . . . . . . . 12
| |
| 65 | 64, 61 | negsubd 8343 |
. . . . . . . . . . 11
|
| 66 | 63, 65 | eqtrd 2229 |
. . . . . . . . . 10
|
| 67 | 2times 9118 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 60, 66, 68 | 3eqtr4d 2239 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 5938 |
. . . . . . . 8
|
| 71 | 57, 58, 70 | syl2anc 411 |
. . . . . . 7
|
| 72 | 56, 71 | eqtrd 2229 |
. . . . . 6
|
| 73 | 9 | nnzd 9447 |
. . . . . . . . 9
|
| 74 | zmulcl 9379 |
. . . . . . . . 9
| |
| 75 | 18, 73, 74 | sylancr 414 |
. . . . . . . 8
|
| 76 | gcddvds 12130 |
. . . . . . . 8
| |
| 77 | 7, 75, 76 | syl2anc 411 |
. . . . . . 7
|
| 78 | 77 | simprd 114 |
. . . . . 6
|
| 79 | 72, 78 | eqbrtrd 4055 |
. . . . 5
|
| 80 | 1z 9352 |
. . . . . . . 8
| |
| 81 | gcdaddm 12151 |
. . . . . . . 8
| |
| 82 | 80, 7, 11, 81 | mp3an2i 1353 |
. . . . . . 7
|
| 83 | ppncan 8268 |
. . . . . . . . . . 11
| |
| 84 | 83 | 3anidm13 1307 |
. . . . . . . . . 10
|
| 85 | 61 | mulid2d 8045 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 5938 |
. . . . . . . . . 10
|
| 87 | 2times 9118 |
. . . . . . . . . . 11
| |
| 88 | 87 | adantr 276 |
. . . . . . . . . 10
|
| 89 | 84, 86, 88 | 3eqtr4d 2239 |
. . . . . . . . 9
|
| 90 | 57, 58, 89 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 90 | oveq2d 5938 |
. . . . . . 7
|
| 92 | 82, 91 | eqtrd 2229 |
. . . . . 6
|
| 93 | 8 | nnzd 9447 |
. . . . . . . . 9
|
| 94 | zmulcl 9379 |
. . . . . . . . 9
| |
| 95 | 18, 93, 94 | sylancr 414 |
. . . . . . . 8
|
| 96 | gcddvds 12130 |
. . . . . . . 8
| |
| 97 | 7, 95, 96 | syl2anc 411 |
. . . . . . 7
|
| 98 | 97 | simprd 114 |
. . . . . 6
|
| 99 | 92, 98 | eqbrtrd 4055 |
. . . . 5
|
| 100 | nnaddcl 9010 |
. . . . . . . . . . . . . 14
| |
| 101 | 100 | nnne0d 9035 |
. . . . . . . . . . . . 13
|
| 102 | 101 | ancoms 268 |
. . . . . . . . . . . 12
|
| 103 | 102 | 3adant1 1017 |
. . . . . . . . . . 11
|
| 104 | 103 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 105 | 104 | neneqd 2388 |
. . . . . . . . 9
|
| 106 | 105 | intnand 932 |
. . . . . . . 8
|
| 107 | gcdn0cl 12129 |
. . . . . . . 8
| |
| 108 | 7, 11, 106, 107 | syl21anc 1248 |
. . . . . . 7
|
| 109 | 108 | nnzd 9447 |
. . . . . 6
|
| 110 | dvdsgcd 12179 |
. . . . . 6
| |
| 111 | 109, 75, 95, 110 | syl3anc 1249 |
. . . . 5
|
| 112 | 79, 99, 111 | mp2and 433 |
. . . 4
|
| 113 | 2nn0 9266 |
. . . . . 6
| |
| 114 | mulgcd 12183 |
. . . . . 6
| |
| 115 | 113, 73, 93, 114 | mp3an2i 1353 |
. . . . 5
|
| 116 | pythagtriplem3 12436 |
. . . . . . 7
| |
| 117 | 116 | oveq2d 5938 |
. . . . . 6
|
| 118 | 2t1e2 9144 |
. . . . . 6
| |
| 119 | 117, 118 | eqtrdi 2245 |
. . . . 5
|
| 120 | 115, 119 | eqtrd 2229 |
. . . 4
|
| 121 | 112, 120 | breqtrd 4059 |
. . 3
|
| 122 | dvdsprime 12290 |
. . . 4
| |
| 123 | 47, 108, 122 | sylancr 414 |
. . 3
|
| 124 | 121, 123 | mpbid 147 |
. 2
|
| 125 | orel1 726 |
. 2
| |
| 126 | 53, 124, 125 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-prm 12276 |
| This theorem is referenced by: pythagtriplem6 12439 pythagtriplem7 12440 |
| Copyright terms: Public domain | W3C validator |