Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pythagtriplem4 | Unicode version |
Description: Lemma for pythagtrip 12211. Show that and are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1016 | . . 3 | |
2 | nnz 9206 | . . . . . . . . . . . . 13 | |
3 | nnz 9206 | . . . . . . . . . . . . 13 | |
4 | zsubcl 9228 | . . . . . . . . . . . . 13 | |
5 | 2, 3, 4 | syl2anr 288 | . . . . . . . . . . . 12 |
6 | 5 | 3adant1 1005 | . . . . . . . . . . 11 |
7 | 6 | 3ad2ant1 1008 | . . . . . . . . . 10 |
8 | simp13 1019 | . . . . . . . . . . . 12 | |
9 | simp12 1018 | . . . . . . . . . . . 12 | |
10 | 8, 9 | nnaddcld 8901 | . . . . . . . . . . 11 |
11 | 10 | nnzd 9308 | . . . . . . . . . 10 |
12 | gcddvds 11892 | . . . . . . . . . 10 | |
13 | 7, 11, 12 | syl2anc 409 | . . . . . . . . 9 |
14 | 13 | simprd 113 | . . . . . . . 8 |
15 | breq1 3984 | . . . . . . . . 9 | |
16 | 15 | biimpd 143 | . . . . . . . 8 |
17 | 14, 16 | mpan9 279 | . . . . . . 7 |
18 | 2z 9215 | . . . . . . . 8 | |
19 | simpl13 1064 | . . . . . . . . . 10 | |
20 | 19 | nnzd 9308 | . . . . . . . . 9 |
21 | simpl12 1063 | . . . . . . . . . 10 | |
22 | 21 | nnzd 9308 | . . . . . . . . 9 |
23 | 20, 22 | zaddcld 9313 | . . . . . . . 8 |
24 | 20, 22 | zsubcld 9314 | . . . . . . . 8 |
25 | dvdsmultr1 11767 | . . . . . . . 8 | |
26 | 18, 23, 24, 25 | mp3an2i 1332 | . . . . . . 7 |
27 | 17, 26 | mpd 13 | . . . . . 6 |
28 | 19 | nncnd 8867 | . . . . . . 7 |
29 | 21 | nncnd 8867 | . . . . . . 7 |
30 | subsq 10557 | . . . . . . 7 | |
31 | 28, 29, 30 | syl2anc 409 | . . . . . 6 |
32 | 27, 31 | breqtrrd 4009 | . . . . 5 |
33 | simpl2 991 | . . . . . . 7 | |
34 | 33 | oveq1d 5856 | . . . . . 6 |
35 | simpl11 1062 | . . . . . . . . 9 | |
36 | 35 | nnsqcld 10605 | . . . . . . . 8 |
37 | 36 | nncnd 8867 | . . . . . . 7 |
38 | 21 | nnsqcld 10605 | . . . . . . . 8 |
39 | 38 | nncnd 8867 | . . . . . . 7 |
40 | 37, 39 | pncand 8206 | . . . . . 6 |
41 | 34, 40 | eqtr3d 2200 | . . . . 5 |
42 | 32, 41 | breqtrd 4007 | . . . 4 |
43 | nnz 9206 | . . . . . . . 8 | |
44 | 43 | 3ad2ant1 1008 | . . . . . . 7 |
45 | 44 | 3ad2ant1 1008 | . . . . . 6 |
46 | 45 | adantr 274 | . . . . 5 |
47 | 2prm 12055 | . . . . . 6 | |
48 | 2nn 9014 | . . . . . 6 | |
49 | prmdvdsexp 12076 | . . . . . 6 | |
50 | 47, 48, 49 | mp3an13 1318 | . . . . 5 |
51 | 46, 50 | syl 14 | . . . 4 |
52 | 42, 51 | mpbid 146 | . . 3 |
53 | 1, 52 | mtand 655 | . 2 |
54 | neg1z 9219 | . . . . . . . 8 | |
55 | gcdaddm 11913 | . . . . . . . 8 | |
56 | 54, 7, 11, 55 | mp3an2i 1332 | . . . . . . 7 |
57 | 8 | nncnd 8867 | . . . . . . . 8 |
58 | 9 | nncnd 8867 | . . . . . . . 8 |
59 | pnncan 8135 | . . . . . . . . . . 11 | |
60 | 59 | 3anidm23 1287 | . . . . . . . . . 10 |
61 | subcl 8093 | . . . . . . . . . . . . 13 | |
62 | 61 | mulm1d 8304 | . . . . . . . . . . . 12 |
63 | 62 | oveq2d 5857 | . . . . . . . . . . 11 |
64 | addcl 7874 | . . . . . . . . . . . 12 | |
65 | 64, 61 | negsubd 8211 | . . . . . . . . . . 11 |
66 | 63, 65 | eqtrd 2198 | . . . . . . . . . 10 |
67 | 2times 8981 | . . . . . . . . . . 11 | |
68 | 67 | adantl 275 | . . . . . . . . . 10 |
69 | 60, 66, 68 | 3eqtr4d 2208 | . . . . . . . . 9 |
70 | 69 | oveq2d 5857 | . . . . . . . 8 |
71 | 57, 58, 70 | syl2anc 409 | . . . . . . 7 |
72 | 56, 71 | eqtrd 2198 | . . . . . 6 |
73 | 9 | nnzd 9308 | . . . . . . . . 9 |
74 | zmulcl 9240 | . . . . . . . . 9 | |
75 | 18, 73, 74 | sylancr 411 | . . . . . . . 8 |
76 | gcddvds 11892 | . . . . . . . 8 | |
77 | 7, 75, 76 | syl2anc 409 | . . . . . . 7 |
78 | 77 | simprd 113 | . . . . . 6 |
79 | 72, 78 | eqbrtrd 4003 | . . . . 5 |
80 | 1z 9213 | . . . . . . . 8 | |
81 | gcdaddm 11913 | . . . . . . . 8 | |
82 | 80, 7, 11, 81 | mp3an2i 1332 | . . . . . . 7 |
83 | ppncan 8136 | . . . . . . . . . . 11 | |
84 | 83 | 3anidm13 1286 | . . . . . . . . . 10 |
85 | 61 | mulid2d 7913 | . . . . . . . . . . 11 |
86 | 85 | oveq2d 5857 | . . . . . . . . . 10 |
87 | 2times 8981 | . . . . . . . . . . 11 | |
88 | 87 | adantr 274 | . . . . . . . . . 10 |
89 | 84, 86, 88 | 3eqtr4d 2208 | . . . . . . . . 9 |
90 | 57, 58, 89 | syl2anc 409 | . . . . . . . 8 |
91 | 90 | oveq2d 5857 | . . . . . . 7 |
92 | 82, 91 | eqtrd 2198 | . . . . . 6 |
93 | 8 | nnzd 9308 | . . . . . . . . 9 |
94 | zmulcl 9240 | . . . . . . . . 9 | |
95 | 18, 93, 94 | sylancr 411 | . . . . . . . 8 |
96 | gcddvds 11892 | . . . . . . . 8 | |
97 | 7, 95, 96 | syl2anc 409 | . . . . . . 7 |
98 | 97 | simprd 113 | . . . . . 6 |
99 | 92, 98 | eqbrtrd 4003 | . . . . 5 |
100 | nnaddcl 8873 | . . . . . . . . . . . . . 14 | |
101 | 100 | nnne0d 8898 | . . . . . . . . . . . . 13 |
102 | 101 | ancoms 266 | . . . . . . . . . . . 12 |
103 | 102 | 3adant1 1005 | . . . . . . . . . . 11 |
104 | 103 | 3ad2ant1 1008 | . . . . . . . . . 10 |
105 | 104 | neneqd 2356 | . . . . . . . . 9 |
106 | 105 | intnand 921 | . . . . . . . 8 |
107 | gcdn0cl 11891 | . . . . . . . 8 | |
108 | 7, 11, 106, 107 | syl21anc 1227 | . . . . . . 7 |
109 | 108 | nnzd 9308 | . . . . . 6 |
110 | dvdsgcd 11941 | . . . . . 6 | |
111 | 109, 75, 95, 110 | syl3anc 1228 | . . . . 5 |
112 | 79, 99, 111 | mp2and 430 | . . . 4 |
113 | 2nn0 9127 | . . . . . 6 | |
114 | mulgcd 11945 | . . . . . 6 | |
115 | 113, 73, 93, 114 | mp3an2i 1332 | . . . . 5 |
116 | pythagtriplem3 12195 | . . . . . . 7 | |
117 | 116 | oveq2d 5857 | . . . . . 6 |
118 | 2t1e2 9006 | . . . . . 6 | |
119 | 117, 118 | eqtrdi 2214 | . . . . 5 |
120 | 115, 119 | eqtrd 2198 | . . . 4 |
121 | 112, 120 | breqtrd 4007 | . . 3 |
122 | dvdsprime 12050 | . . . 4 | |
123 | 47, 108, 122 | sylancr 411 | . . 3 |
124 | 121, 123 | mpbid 146 | . 2 |
125 | orel1 715 | . 2 | |
126 | 53, 124, 125 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wne 2335 class class class wbr 3981 (class class class)co 5841 cc 7747 cc0 7749 c1 7750 caddc 7752 cmul 7754 cmin 8065 cneg 8066 cn 8853 c2 8904 cn0 9110 cz 9187 cexp 10450 cdvds 11723 cgcd 11871 cprime 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-1o 6380 df-2o 6381 df-er 6497 df-en 6703 df-sup 6945 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-dvds 11724 df-gcd 11872 df-prm 12036 |
This theorem is referenced by: pythagtriplem6 12198 pythagtriplem7 12199 |
Copyright terms: Public domain | W3C validator |