| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem4 | Unicode version | ||
| Description: Lemma for pythagtrip 12772. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1031 |
. . 3
| |
| 2 | nnz 9433 |
. . . . . . . . . . . . 13
| |
| 3 | nnz 9433 |
. . . . . . . . . . . . 13
| |
| 4 | zsubcl 9455 |
. . . . . . . . . . . . 13
| |
| 5 | 2, 3, 4 | syl2anr 290 |
. . . . . . . . . . . 12
|
| 6 | 5 | 3adant1 1020 |
. . . . . . . . . . 11
|
| 7 | 6 | 3ad2ant1 1023 |
. . . . . . . . . 10
|
| 8 | simp13 1034 |
. . . . . . . . . . . 12
| |
| 9 | simp12 1033 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | nnaddcld 9126 |
. . . . . . . . . . 11
|
| 11 | 10 | nnzd 9536 |
. . . . . . . . . 10
|
| 12 | gcddvds 12450 |
. . . . . . . . . 10
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . . . . 9
|
| 14 | 13 | simprd 114 |
. . . . . . . 8
|
| 15 | breq1 4065 |
. . . . . . . . 9
| |
| 16 | 15 | biimpd 144 |
. . . . . . . 8
|
| 17 | 14, 16 | mpan9 281 |
. . . . . . 7
|
| 18 | 2z 9442 |
. . . . . . . 8
| |
| 19 | simpl13 1079 |
. . . . . . . . . 10
| |
| 20 | 19 | nnzd 9536 |
. . . . . . . . 9
|
| 21 | simpl12 1078 |
. . . . . . . . . 10
| |
| 22 | 21 | nnzd 9536 |
. . . . . . . . 9
|
| 23 | 20, 22 | zaddcld 9541 |
. . . . . . . 8
|
| 24 | 20, 22 | zsubcld 9542 |
. . . . . . . 8
|
| 25 | dvdsmultr1 12308 |
. . . . . . . 8
| |
| 26 | 18, 23, 24, 25 | mp3an2i 1357 |
. . . . . . 7
|
| 27 | 17, 26 | mpd 13 |
. . . . . 6
|
| 28 | 19 | nncnd 9092 |
. . . . . . 7
|
| 29 | 21 | nncnd 9092 |
. . . . . . 7
|
| 30 | subsq 10835 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 27, 31 | breqtrrd 4090 |
. . . . 5
|
| 33 | simpl2 1006 |
. . . . . . 7
| |
| 34 | 33 | oveq1d 5989 |
. . . . . 6
|
| 35 | simpl11 1077 |
. . . . . . . . 9
| |
| 36 | 35 | nnsqcld 10883 |
. . . . . . . 8
|
| 37 | 36 | nncnd 9092 |
. . . . . . 7
|
| 38 | 21 | nnsqcld 10883 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9092 |
. . . . . . 7
|
| 40 | 37, 39 | pncand 8426 |
. . . . . 6
|
| 41 | 34, 40 | eqtr3d 2244 |
. . . . 5
|
| 42 | 32, 41 | breqtrd 4088 |
. . . 4
|
| 43 | nnz 9433 |
. . . . . . . 8
| |
| 44 | 43 | 3ad2ant1 1023 |
. . . . . . 7
|
| 45 | 44 | 3ad2ant1 1023 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 2prm 12615 |
. . . . . 6
| |
| 48 | 2nn 9240 |
. . . . . 6
| |
| 49 | prmdvdsexp 12636 |
. . . . . 6
| |
| 50 | 47, 48, 49 | mp3an13 1343 |
. . . . 5
|
| 51 | 46, 50 | syl 14 |
. . . 4
|
| 52 | 42, 51 | mpbid 147 |
. . 3
|
| 53 | 1, 52 | mtand 669 |
. 2
|
| 54 | neg1z 9446 |
. . . . . . . 8
| |
| 55 | gcdaddm 12471 |
. . . . . . . 8
| |
| 56 | 54, 7, 11, 55 | mp3an2i 1357 |
. . . . . . 7
|
| 57 | 8 | nncnd 9092 |
. . . . . . . 8
|
| 58 | 9 | nncnd 9092 |
. . . . . . . 8
|
| 59 | pnncan 8355 |
. . . . . . . . . . 11
| |
| 60 | 59 | 3anidm23 1312 |
. . . . . . . . . 10
|
| 61 | subcl 8313 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | mulm1d 8524 |
. . . . . . . . . . . 12
|
| 63 | 62 | oveq2d 5990 |
. . . . . . . . . . 11
|
| 64 | addcl 8092 |
. . . . . . . . . . . 12
| |
| 65 | 64, 61 | negsubd 8431 |
. . . . . . . . . . 11
|
| 66 | 63, 65 | eqtrd 2242 |
. . . . . . . . . 10
|
| 67 | 2times 9206 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 60, 66, 68 | 3eqtr4d 2252 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 5990 |
. . . . . . . 8
|
| 71 | 57, 58, 70 | syl2anc 411 |
. . . . . . 7
|
| 72 | 56, 71 | eqtrd 2242 |
. . . . . 6
|
| 73 | 9 | nnzd 9536 |
. . . . . . . . 9
|
| 74 | zmulcl 9468 |
. . . . . . . . 9
| |
| 75 | 18, 73, 74 | sylancr 414 |
. . . . . . . 8
|
| 76 | gcddvds 12450 |
. . . . . . . 8
| |
| 77 | 7, 75, 76 | syl2anc 411 |
. . . . . . 7
|
| 78 | 77 | simprd 114 |
. . . . . 6
|
| 79 | 72, 78 | eqbrtrd 4084 |
. . . . 5
|
| 80 | 1z 9440 |
. . . . . . . 8
| |
| 81 | gcdaddm 12471 |
. . . . . . . 8
| |
| 82 | 80, 7, 11, 81 | mp3an2i 1357 |
. . . . . . 7
|
| 83 | ppncan 8356 |
. . . . . . . . . . 11
| |
| 84 | 83 | 3anidm13 1311 |
. . . . . . . . . 10
|
| 85 | 61 | mulid2d 8133 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 5990 |
. . . . . . . . . 10
|
| 87 | 2times 9206 |
. . . . . . . . . . 11
| |
| 88 | 87 | adantr 276 |
. . . . . . . . . 10
|
| 89 | 84, 86, 88 | 3eqtr4d 2252 |
. . . . . . . . 9
|
| 90 | 57, 58, 89 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 90 | oveq2d 5990 |
. . . . . . 7
|
| 92 | 82, 91 | eqtrd 2242 |
. . . . . 6
|
| 93 | 8 | nnzd 9536 |
. . . . . . . . 9
|
| 94 | zmulcl 9468 |
. . . . . . . . 9
| |
| 95 | 18, 93, 94 | sylancr 414 |
. . . . . . . 8
|
| 96 | gcddvds 12450 |
. . . . . . . 8
| |
| 97 | 7, 95, 96 | syl2anc 411 |
. . . . . . 7
|
| 98 | 97 | simprd 114 |
. . . . . 6
|
| 99 | 92, 98 | eqbrtrd 4084 |
. . . . 5
|
| 100 | nnaddcl 9098 |
. . . . . . . . . . . . . 14
| |
| 101 | 100 | nnne0d 9123 |
. . . . . . . . . . . . 13
|
| 102 | 101 | ancoms 268 |
. . . . . . . . . . . 12
|
| 103 | 102 | 3adant1 1020 |
. . . . . . . . . . 11
|
| 104 | 103 | 3ad2ant1 1023 |
. . . . . . . . . 10
|
| 105 | 104 | neneqd 2401 |
. . . . . . . . 9
|
| 106 | 105 | intnand 935 |
. . . . . . . 8
|
| 107 | gcdn0cl 12449 |
. . . . . . . 8
| |
| 108 | 7, 11, 106, 107 | syl21anc 1251 |
. . . . . . 7
|
| 109 | 108 | nnzd 9536 |
. . . . . 6
|
| 110 | dvdsgcd 12499 |
. . . . . 6
| |
| 111 | 109, 75, 95, 110 | syl3anc 1252 |
. . . . 5
|
| 112 | 79, 99, 111 | mp2and 433 |
. . . 4
|
| 113 | 2nn0 9354 |
. . . . . 6
| |
| 114 | mulgcd 12503 |
. . . . . 6
| |
| 115 | 113, 73, 93, 114 | mp3an2i 1357 |
. . . . 5
|
| 116 | pythagtriplem3 12756 |
. . . . . . 7
| |
| 117 | 116 | oveq2d 5990 |
. . . . . 6
|
| 118 | 2t1e2 9232 |
. . . . . 6
| |
| 119 | 117, 118 | eqtrdi 2258 |
. . . . 5
|
| 120 | 115, 119 | eqtrd 2242 |
. . . 4
|
| 121 | 112, 120 | breqtrd 4088 |
. . 3
|
| 122 | dvdsprime 12610 |
. . . 4
| |
| 123 | 47, 108, 122 | sylancr 414 |
. . 3
|
| 124 | 121, 123 | mpbid 147 |
. 2
|
| 125 | orel1 729 |
. 2
| |
| 126 | 53, 124, 125 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 df-prm 12596 |
| This theorem is referenced by: pythagtriplem6 12759 pythagtriplem7 12760 |
| Copyright terms: Public domain | W3C validator |