ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem4 Unicode version

Theorem pythagtriplem4 12635
Description: Lemma for pythagtrip 12650. Show that  C  -  B and  C  +  B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1029 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  A )
2 nnz 9398 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  ZZ )
3 nnz 9398 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
4 zsubcl 9420 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  -  B
)  e.  ZZ )
52, 3, 4syl2anr 290 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  ZZ )
653adant1 1018 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  ZZ )
763ad2ant1 1021 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  ZZ )
8 simp13 1032 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
9 simp12 1031 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
108, 9nnaddcld 9091 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  NN )
1110nnzd 9501 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  ZZ )
12 gcddvds 12328 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( C  +  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  ( C  +  B )
) )
137, 11, 12syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  ( C  -  B )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) ) )
1413simprd 114 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) )
15 breq1 4050 . . . . . . . . 9  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  <->  2  ||  ( C  +  B )
) )
1615biimpd 144 . . . . . . . 8  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  ->  2  ||  ( C  +  B
) ) )
1714, 16mpan9 281 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( C  +  B
) )
18 2z 9407 . . . . . . . 8  |-  2  e.  ZZ
19 simpl13 1077 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  NN )
2019nnzd 9501 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  ZZ )
21 simpl12 1076 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  NN )
2221nnzd 9501 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  ZZ )
2320, 22zaddcld 9506 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  +  B )  e.  ZZ )
2420, 22zsubcld 9507 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  -  B )  e.  ZZ )
25 dvdsmultr1 12186 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  ( C  -  B
)  e.  ZZ )  ->  ( 2  ||  ( C  +  B
)  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2618, 23, 24, 25mp3an2i 1355 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( C  +  B )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2717, 26mpd 13 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) )
2819nncnd 9057 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  CC )
2921nncnd 9057 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  CC )
30 subsq 10798 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3128, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3227, 31breqtrrd 4075 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C ^
2 )  -  ( B ^ 2 ) ) )
33 simpl2 1004 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
3433oveq1d 5966 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
35 simpl11 1075 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  NN )
3635nnsqcld 10846 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  NN )
3736nncnd 9057 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  CC )
3821nnsqcld 10846 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  NN )
3938nncnd 9057 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  CC )
4037, 39pncand 8391 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4134, 40eqtr3d 2241 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4232, 41breqtrd 4073 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( A ^ 2 ) )
43 nnz 9398 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
44433ad2ant1 1021 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
45443ad2ant1 1021 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  ZZ )
4645adantr 276 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  ZZ )
47 2prm 12493 . . . . . 6  |-  2  e.  Prime
48 2nn 9205 . . . . . 6  |-  2  e.  NN
49 prmdvdsexp 12514 . . . . . 6  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  2  e.  NN )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5047, 48, 49mp3an13 1341 . . . . 5  |-  ( A  e.  ZZ  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5146, 50syl 14 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5242, 51mpbid 147 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  A )
531, 52mtand 667 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2 )
54 neg1z 9411 . . . . . . . 8  |-  -u 1  e.  ZZ
55 gcdaddm 12349 . . . . . . . 8  |-  ( (
-u 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) ) )
5654, 7, 11, 55mp3an2i 1355 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) ) )
578nncnd 9057 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
589nncnd 9057 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
59 pnncan 8320 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( B  +  B ) )
60593anidm23 1310 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( B  +  B ) )
61 subcl 8278 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
6261mulm1d 8489 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( C  -  B
) )  =  -u ( C  -  B
) )
6362oveq2d 5967 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  +  -u ( C  -  B )
) )
64 addcl 8057 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
6564, 61negsubd 8396 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  -u ( C  -  B
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
6663, 65eqtrd 2239 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
67 2times 9171 . . . . . . . . . . 11  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
6867adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
6960, 66, 683eqtr4d 2249 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( 2  x.  B ) )
7069oveq2d 5967 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) )  =  ( ( C  -  B
)  gcd  ( 2  x.  B ) ) )
7157, 58, 70syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  B
) ) )
7256, 71eqtrd 2239 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  B ) ) )
739nnzd 9501 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  ZZ )
74 zmulcl 9433 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  ZZ )
7518, 73, 74sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  B )  e.  ZZ )
76 gcddvds 12328 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  B
) )  ||  (
2  x.  B ) ) )
777, 75, 76syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( 2  x.  B ) ) )
7877simprd 114 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  B ) ) 
||  ( 2  x.  B ) )
7972, 78eqbrtrd 4069 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
) )
80 1z 9405 . . . . . . . 8  |-  1  e.  ZZ
81 gcdaddm 12349 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) ) )
8280, 7, 11, 81mp3an2i 1355 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) ) ) )
83 ppncan 8321 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
84833anidm13 1309 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
8561mulid2d 8098 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( C  -  B )
)  =  ( C  -  B ) )
8685oveq2d 5967 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( ( C  +  B )  +  ( C  -  B ) ) )
87 2times 9171 . . . . . . . . . . 11  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
8887adantr 276 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
8984, 86, 883eqtr4d 2249 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9057, 58, 89syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9190oveq2d 5967 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  C
) ) )
9282, 91eqtrd 2239 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  C ) ) )
938nnzd 9501 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  ZZ )
94 zmulcl 9433 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  C  e.  ZZ )  ->  ( 2  x.  C
)  e.  ZZ )
9518, 93, 94sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  C )  e.  ZZ )
96 gcddvds 12328 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  C ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  C
) )  ||  (
2  x.  C ) ) )
977, 95, 96syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( 2  x.  C ) ) )
9897simprd 114 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  C ) ) 
||  ( 2  x.  C ) )
9992, 98eqbrtrd 4069 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  C
) )
100 nnaddcl 9063 . . . . . . . . . . . . . 14  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  e.  NN )
101100nnne0d 9088 . . . . . . . . . . . . 13  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  =/=  0 )
102101ancoms 268 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  =/=  0 )
1031023adant1 1018 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  =/=  0 )
1041033ad2ant1 1021 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  =/=  0 )
105104neneqd 2398 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( C  +  B
)  =  0 )
106105intnand 933 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )
107 gcdn0cl 12327 . . . . . . . 8  |-  ( ( ( ( C  -  B )  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  /\  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  e.  NN )
1087, 11, 106, 107syl21anc 1249 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )
109108nnzd 9501 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  ZZ )
110 dvdsgcd 12377 . . . . . 6  |-  ( ( ( ( C  -  B )  gcd  ( C  +  B )
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( ( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
111109, 75, 95, 110syl3anc 1250 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  B )  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
11279, 99, 111mp2and 433 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( ( 2  x.  B )  gcd  (
2  x.  C ) ) )
113 2nn0 9319 . . . . . 6  |-  2  e.  NN0
114 mulgcd 12381 . . . . . 6  |-  ( ( 2  e.  NN0  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
115113, 73, 93, 114mp3an2i 1355 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
116 pythagtriplem3 12634 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  =  1 )
117116oveq2d 5967 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  ( 2  x.  1 ) )
118 2t1e2 9197 . . . . . 6  |-  ( 2  x.  1 )  =  2
119117, 118eqtrdi 2255 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  2 )
120115, 119eqtrd 2239 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  2 )
121112, 120breqtrd 4073 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  2 )
122 dvdsprime 12488 . . . 4  |-  ( ( 2  e.  Prime  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
12347, 108, 122sylancr 414 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
124121, 123mpbid 147 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B )
)  =  1 ) )
125 orel1 727 . 2  |-  ( -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2  -> 
( ( ( ( C  -  B )  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 ) )
12653, 124, 125sylc 62 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4047  (class class class)co 5951   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    - cmin 8250   -ucneg 8251   NNcn 9043   2c2 9094   NN0cn0 9302   ZZcz 9379   ^cexp 10690    || cdvds 12142    gcd cgcd 12318   Primecprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-prm 12474
This theorem is referenced by:  pythagtriplem6  12637  pythagtriplem7  12638
  Copyright terms: Public domain W3C validator