ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem4 Unicode version

Theorem pythagtriplem4 12222
Description: Lemma for pythagtrip 12237. Show that  C  -  B and  C  +  B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1021 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  A )
2 nnz 9231 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  ZZ )
3 nnz 9231 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
4 zsubcl 9253 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  -  B
)  e.  ZZ )
52, 3, 4syl2anr 288 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  ZZ )
653adant1 1010 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  ZZ )
763ad2ant1 1013 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  ZZ )
8 simp13 1024 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
9 simp12 1023 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
108, 9nnaddcld 8926 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  NN )
1110nnzd 9333 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  ZZ )
12 gcddvds 11918 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( C  +  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  ( C  +  B )
) )
137, 11, 12syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  ( C  -  B )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) ) )
1413simprd 113 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
) )
15 breq1 3992 . . . . . . . . 9  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  <->  2  ||  ( C  +  B )
) )
1615biimpd 143 . . . . . . . 8  |-  ( ( ( C  -  B
)  gcd  ( C  +  B ) )  =  2  ->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( C  +  B
)  ->  2  ||  ( C  +  B
) ) )
1714, 16mpan9 279 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( C  +  B
) )
18 2z 9240 . . . . . . . 8  |-  2  e.  ZZ
19 simpl13 1069 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  NN )
2019nnzd 9333 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  ZZ )
21 simpl12 1068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  NN )
2221nnzd 9333 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  ZZ )
2320, 22zaddcld 9338 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  +  B )  e.  ZZ )
2420, 22zsubcld 9339 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( C  -  B )  e.  ZZ )
25 dvdsmultr1 11793 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  ( C  -  B
)  e.  ZZ )  ->  ( 2  ||  ( C  +  B
)  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2618, 23, 24, 25mp3an2i 1337 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( C  +  B )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) ) )
2717, 26mpd 13 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C  +  B )  x.  ( C  -  B )
) )
2819nncnd 8892 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  C  e.  CC )
2921nncnd 8892 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  B  e.  CC )
30 subsq 10582 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3128, 29, 30syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3227, 31breqtrrd 4017 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( ( C ^
2 )  -  ( B ^ 2 ) ) )
33 simpl2 996 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
3433oveq1d 5868 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
35 simpl11 1067 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  NN )
3635nnsqcld 10630 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  NN )
3736nncnd 8892 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( A ^ 2 )  e.  CC )
3821nnsqcld 10630 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  NN )
3938nncnd 8892 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  ( B ^ 2 )  e.  CC )
4037, 39pncand 8231 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4134, 40eqtr3d 2205 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
4232, 41breqtrd 4015 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  ( A ^ 2 ) )
43 nnz 9231 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
44433ad2ant1 1013 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
45443ad2ant1 1013 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  ZZ )
4645adantr 274 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  A  e.  ZZ )
47 2prm 12081 . . . . . 6  |-  2  e.  Prime
48 2nn 9039 . . . . . 6  |-  2  e.  NN
49 prmdvdsexp 12102 . . . . . 6  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  2  e.  NN )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5047, 48, 49mp3an13 1323 . . . . 5  |-  ( A  e.  ZZ  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5146, 50syl 14 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  (
2  ||  ( A ^ 2 )  <->  2  ||  A ) )
5242, 51mpbid 146 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  =  2 )  ->  2  ||  A )
531, 52mtand 660 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2 )
54 neg1z 9244 . . . . . . . 8  |-  -u 1  e.  ZZ
55 gcdaddm 11939 . . . . . . . 8  |-  ( (
-u 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) ) )
5654, 7, 11, 55mp3an2i 1337 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) ) )
578nncnd 8892 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
589nncnd 8892 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
59 pnncan 8160 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( B  +  B ) )
60593anidm23 1292 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( B  +  B ) )
61 subcl 8118 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
6261mulm1d 8329 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( C  -  B
) )  =  -u ( C  -  B
) )
6362oveq2d 5869 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  +  -u ( C  -  B )
) )
64 addcl 7899 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
6564, 61negsubd 8236 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  -u ( C  -  B
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
6663, 65eqtrd 2203 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
67 2times 9006 . . . . . . . . . . 11  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
6867adantl 275 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
6960, 66, 683eqtr4d 2213 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  (
-u 1  x.  ( C  -  B )
) )  =  ( 2  x.  B ) )
7069oveq2d 5869 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( -u
1  x.  ( C  -  B ) ) ) )  =  ( ( C  -  B
)  gcd  ( 2  x.  B ) ) )
7157, 58, 70syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( -u 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  B
) ) )
7256, 71eqtrd 2203 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  B ) ) )
739nnzd 9333 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  ZZ )
74 zmulcl 9265 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  ZZ )
7518, 73, 74sylancr 412 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  B )  e.  ZZ )
76 gcddvds 11918 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  B ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  B
) )  ||  (
2  x.  B ) ) )
777, 75, 76syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  B ) )  ||  ( 2  x.  B ) ) )
7877simprd 113 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  B ) ) 
||  ( 2  x.  B ) )
7972, 78eqbrtrd 4011 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
) )
80 1z 9238 . . . . . . . 8  |-  1  e.  ZZ
81 gcdaddm 11939 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  =  ( ( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) ) )
8280, 7, 11, 81mp3an2i 1337 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) ) ) )
83 ppncan 8161 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
84833anidm13 1291 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
8561mulid2d 7938 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( C  -  B )
)  =  ( C  -  B ) )
8685oveq2d 5869 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( ( C  +  B )  +  ( C  -  B ) ) )
87 2times 9006 . . . . . . . . . . 11  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
8887adantr 274 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
8984, 86, 883eqtr4d 2213 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9057, 58, 89syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( 1  x.  ( C  -  B ) ) )  =  ( 2  x.  C ) )
9190oveq2d 5869 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( ( C  +  B )  +  ( 1  x.  ( C  -  B
) ) ) )  =  ( ( C  -  B )  gcd  ( 2  x.  C
) ) )
9282, 91eqtrd 2203 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  ( ( C  -  B )  gcd  (
2  x.  C ) ) )
938nnzd 9333 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  ZZ )
94 zmulcl 9265 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  C  e.  ZZ )  ->  ( 2  x.  C
)  e.  ZZ )
9518, 93, 94sylancr 412 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  C )  e.  ZZ )
96 gcddvds 11918 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( C  -  B )  gcd  ( 2  x.  C ) )  ||  ( C  -  B
)  /\  ( ( C  -  B )  gcd  ( 2  x.  C
) )  ||  (
2  x.  C ) ) )
977, 95, 96syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( C  -  B )  /\  ( ( C  -  B )  gcd  (
2  x.  C ) )  ||  ( 2  x.  C ) ) )
9897simprd 113 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( 2  x.  C ) ) 
||  ( 2  x.  C ) )
9992, 98eqbrtrd 4011 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  C
) )
100 nnaddcl 8898 . . . . . . . . . . . . . 14  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  e.  NN )
101100nnne0d 8923 . . . . . . . . . . . . 13  |-  ( ( C  e.  NN  /\  B  e.  NN )  ->  ( C  +  B
)  =/=  0 )
102101ancoms 266 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  =/=  0 )
1031023adant1 1010 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  =/=  0 )
1041033ad2ant1 1013 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  =/=  0 )
105104neneqd 2361 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( C  +  B
)  =  0 )
106105intnand 926 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )
107 gcdn0cl 11917 . . . . . . . 8  |-  ( ( ( ( C  -  B )  e.  ZZ  /\  ( C  +  B
)  e.  ZZ )  /\  -.  ( ( C  -  B )  =  0  /\  ( C  +  B )  =  0 ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  e.  NN )
1087, 11, 106, 107syl21anc 1232 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )
109108nnzd 9333 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  ZZ )
110 dvdsgcd 11967 . . . . . 6  |-  ( ( ( ( C  -  B )  gcd  ( C  +  B )
)  e.  ZZ  /\  ( 2  x.  B
)  e.  ZZ  /\  ( 2  x.  C
)  e.  ZZ )  ->  ( ( ( ( C  -  B
)  gcd  ( C  +  B ) )  ||  ( 2  x.  B
)  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
111109, 75, 95, 110syl3anc 1233 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  B )  /\  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
2  x.  C ) )  ->  ( ( C  -  B )  gcd  ( C  +  B
) )  ||  (
( 2  x.  B
)  gcd  ( 2  x.  C ) ) ) )
11279, 99, 111mp2and 431 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  ( ( 2  x.  B )  gcd  (
2  x.  C ) ) )
113 2nn0 9152 . . . . . 6  |-  2  e.  NN0
114 mulgcd 11971 . . . . . 6  |-  ( ( 2  e.  NN0  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
115113, 73, 93, 114mp3an2i 1337 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  ( 2  x.  ( B  gcd  C
) ) )
116 pythagtriplem3 12221 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( B  gcd  C )  =  1 )
117116oveq2d 5869 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  ( 2  x.  1 ) )
118 2t1e2 9031 . . . . . 6  |-  ( 2  x.  1 )  =  2
119117, 118eqtrdi 2219 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  gcd  C ) )  =  2 )
120115, 119eqtrd 2203 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  gcd  ( 2  x.  C ) )  =  2 )
121112, 120breqtrd 4015 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  ||  2 )
122 dvdsprime 12076 . . . 4  |-  ( ( 2  e.  Prime  /\  (
( C  -  B
)  gcd  ( C  +  B ) )  e.  NN )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
12347, 108, 122sylancr 412 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  ||  2  <->  ( (
( C  -  B
)  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 ) ) )
124121, 123mpbid 146 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B )
)  =  1 ) )
125 orel1 720 . 2  |-  ( -.  ( ( C  -  B )  gcd  ( C  +  B )
)  =  2  -> 
( ( ( ( C  -  B )  gcd  ( C  +  B ) )  =  2  \/  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 ) )
12653, 124, 125sylc 62 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    - cmin 8090   -ucneg 8091   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ^cexp 10475    || cdvds 11749    gcd cgcd 11897   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  pythagtriplem6  12224  pythagtriplem7  12225
  Copyright terms: Public domain W3C validator