| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem4 | Unicode version | ||
| Description: Lemma for pythagtrip 12814. Show that |
| Ref | Expression |
|---|---|
| pythagtriplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1050 |
. . 3
| |
| 2 | nnz 9473 |
. . . . . . . . . . . . 13
| |
| 3 | nnz 9473 |
. . . . . . . . . . . . 13
| |
| 4 | zsubcl 9495 |
. . . . . . . . . . . . 13
| |
| 5 | 2, 3, 4 | syl2anr 290 |
. . . . . . . . . . . 12
|
| 6 | 5 | 3adant1 1039 |
. . . . . . . . . . 11
|
| 7 | 6 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 8 | simp13 1053 |
. . . . . . . . . . . 12
| |
| 9 | simp12 1052 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | nnaddcld 9166 |
. . . . . . . . . . 11
|
| 11 | 10 | nnzd 9576 |
. . . . . . . . . 10
|
| 12 | gcddvds 12492 |
. . . . . . . . . 10
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . . . . 9
|
| 14 | 13 | simprd 114 |
. . . . . . . 8
|
| 15 | breq1 4086 |
. . . . . . . . 9
| |
| 16 | 15 | biimpd 144 |
. . . . . . . 8
|
| 17 | 14, 16 | mpan9 281 |
. . . . . . 7
|
| 18 | 2z 9482 |
. . . . . . . 8
| |
| 19 | simpl13 1098 |
. . . . . . . . . 10
| |
| 20 | 19 | nnzd 9576 |
. . . . . . . . 9
|
| 21 | simpl12 1097 |
. . . . . . . . . 10
| |
| 22 | 21 | nnzd 9576 |
. . . . . . . . 9
|
| 23 | 20, 22 | zaddcld 9581 |
. . . . . . . 8
|
| 24 | 20, 22 | zsubcld 9582 |
. . . . . . . 8
|
| 25 | dvdsmultr1 12350 |
. . . . . . . 8
| |
| 26 | 18, 23, 24, 25 | mp3an2i 1376 |
. . . . . . 7
|
| 27 | 17, 26 | mpd 13 |
. . . . . 6
|
| 28 | 19 | nncnd 9132 |
. . . . . . 7
|
| 29 | 21 | nncnd 9132 |
. . . . . . 7
|
| 30 | subsq 10876 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 27, 31 | breqtrrd 4111 |
. . . . 5
|
| 33 | simpl2 1025 |
. . . . . . 7
| |
| 34 | 33 | oveq1d 6022 |
. . . . . 6
|
| 35 | simpl11 1096 |
. . . . . . . . 9
| |
| 36 | 35 | nnsqcld 10924 |
. . . . . . . 8
|
| 37 | 36 | nncnd 9132 |
. . . . . . 7
|
| 38 | 21 | nnsqcld 10924 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9132 |
. . . . . . 7
|
| 40 | 37, 39 | pncand 8466 |
. . . . . 6
|
| 41 | 34, 40 | eqtr3d 2264 |
. . . . 5
|
| 42 | 32, 41 | breqtrd 4109 |
. . . 4
|
| 43 | nnz 9473 |
. . . . . . . 8
| |
| 44 | 43 | 3ad2ant1 1042 |
. . . . . . 7
|
| 45 | 44 | 3ad2ant1 1042 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 2prm 12657 |
. . . . . 6
| |
| 48 | 2nn 9280 |
. . . . . 6
| |
| 49 | prmdvdsexp 12678 |
. . . . . 6
| |
| 50 | 47, 48, 49 | mp3an13 1362 |
. . . . 5
|
| 51 | 46, 50 | syl 14 |
. . . 4
|
| 52 | 42, 51 | mpbid 147 |
. . 3
|
| 53 | 1, 52 | mtand 669 |
. 2
|
| 54 | neg1z 9486 |
. . . . . . . 8
| |
| 55 | gcdaddm 12513 |
. . . . . . . 8
| |
| 56 | 54, 7, 11, 55 | mp3an2i 1376 |
. . . . . . 7
|
| 57 | 8 | nncnd 9132 |
. . . . . . . 8
|
| 58 | 9 | nncnd 9132 |
. . . . . . . 8
|
| 59 | pnncan 8395 |
. . . . . . . . . . 11
| |
| 60 | 59 | 3anidm23 1331 |
. . . . . . . . . 10
|
| 61 | subcl 8353 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | mulm1d 8564 |
. . . . . . . . . . . 12
|
| 63 | 62 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 64 | addcl 8132 |
. . . . . . . . . . . 12
| |
| 65 | 64, 61 | negsubd 8471 |
. . . . . . . . . . 11
|
| 66 | 63, 65 | eqtrd 2262 |
. . . . . . . . . 10
|
| 67 | 2times 9246 |
. . . . . . . . . . 11
| |
| 68 | 67 | adantl 277 |
. . . . . . . . . 10
|
| 69 | 60, 66, 68 | 3eqtr4d 2272 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 6023 |
. . . . . . . 8
|
| 71 | 57, 58, 70 | syl2anc 411 |
. . . . . . 7
|
| 72 | 56, 71 | eqtrd 2262 |
. . . . . 6
|
| 73 | 9 | nnzd 9576 |
. . . . . . . . 9
|
| 74 | zmulcl 9508 |
. . . . . . . . 9
| |
| 75 | 18, 73, 74 | sylancr 414 |
. . . . . . . 8
|
| 76 | gcddvds 12492 |
. . . . . . . 8
| |
| 77 | 7, 75, 76 | syl2anc 411 |
. . . . . . 7
|
| 78 | 77 | simprd 114 |
. . . . . 6
|
| 79 | 72, 78 | eqbrtrd 4105 |
. . . . 5
|
| 80 | 1z 9480 |
. . . . . . . 8
| |
| 81 | gcdaddm 12513 |
. . . . . . . 8
| |
| 82 | 80, 7, 11, 81 | mp3an2i 1376 |
. . . . . . 7
|
| 83 | ppncan 8396 |
. . . . . . . . . . 11
| |
| 84 | 83 | 3anidm13 1330 |
. . . . . . . . . 10
|
| 85 | 61 | mulid2d 8173 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 6023 |
. . . . . . . . . 10
|
| 87 | 2times 9246 |
. . . . . . . . . . 11
| |
| 88 | 87 | adantr 276 |
. . . . . . . . . 10
|
| 89 | 84, 86, 88 | 3eqtr4d 2272 |
. . . . . . . . 9
|
| 90 | 57, 58, 89 | syl2anc 411 |
. . . . . . . 8
|
| 91 | 90 | oveq2d 6023 |
. . . . . . 7
|
| 92 | 82, 91 | eqtrd 2262 |
. . . . . 6
|
| 93 | 8 | nnzd 9576 |
. . . . . . . . 9
|
| 94 | zmulcl 9508 |
. . . . . . . . 9
| |
| 95 | 18, 93, 94 | sylancr 414 |
. . . . . . . 8
|
| 96 | gcddvds 12492 |
. . . . . . . 8
| |
| 97 | 7, 95, 96 | syl2anc 411 |
. . . . . . 7
|
| 98 | 97 | simprd 114 |
. . . . . 6
|
| 99 | 92, 98 | eqbrtrd 4105 |
. . . . 5
|
| 100 | nnaddcl 9138 |
. . . . . . . . . . . . . 14
| |
| 101 | 100 | nnne0d 9163 |
. . . . . . . . . . . . 13
|
| 102 | 101 | ancoms 268 |
. . . . . . . . . . . 12
|
| 103 | 102 | 3adant1 1039 |
. . . . . . . . . . 11
|
| 104 | 103 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 105 | 104 | neneqd 2421 |
. . . . . . . . 9
|
| 106 | 105 | intnand 936 |
. . . . . . . 8
|
| 107 | gcdn0cl 12491 |
. . . . . . . 8
| |
| 108 | 7, 11, 106, 107 | syl21anc 1270 |
. . . . . . 7
|
| 109 | 108 | nnzd 9576 |
. . . . . 6
|
| 110 | dvdsgcd 12541 |
. . . . . 6
| |
| 111 | 109, 75, 95, 110 | syl3anc 1271 |
. . . . 5
|
| 112 | 79, 99, 111 | mp2and 433 |
. . . 4
|
| 113 | 2nn0 9394 |
. . . . . 6
| |
| 114 | mulgcd 12545 |
. . . . . 6
| |
| 115 | 113, 73, 93, 114 | mp3an2i 1376 |
. . . . 5
|
| 116 | pythagtriplem3 12798 |
. . . . . . 7
| |
| 117 | 116 | oveq2d 6023 |
. . . . . 6
|
| 118 | 2t1e2 9272 |
. . . . . 6
| |
| 119 | 117, 118 | eqtrdi 2278 |
. . . . 5
|
| 120 | 115, 119 | eqtrd 2262 |
. . . 4
|
| 121 | 112, 120 | breqtrd 4109 |
. . 3
|
| 122 | dvdsprime 12652 |
. . . 4
| |
| 123 | 47, 108, 122 | sylancr 414 |
. . 3
|
| 124 | 121, 123 | mpbid 147 |
. 2
|
| 125 | orel1 730 |
. 2
| |
| 126 | 53, 124, 125 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 df-prm 12638 |
| This theorem is referenced by: pythagtriplem6 12801 pythagtriplem7 12802 |
| Copyright terms: Public domain | W3C validator |