| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1205 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3coml 1213 syld3an2 1297 3anidm13 1309 eqreu 2972 f1ofveu 5955 acexmid 5966 dfsmo2 6396 f1oeng 6871 ctssdc 7241 ltexprlemdisj 7754 ltexprlemfu 7759 recexprlemss1u 7784 mul32 8237 add32 8266 cnegexlem2 8283 subsub23 8312 subadd23 8319 addsub12 8320 subsub 8337 subsub3 8339 sub32 8341 suble 8548 lesub 8549 ltsub23 8550 ltsub13 8551 ltleadd 8554 div32ap 8800 div13ap 8801 div12ap 8802 divdiv32ap 8828 cju 9069 icc0r 10083 fzen 10200 elfz1b 10247 ioo0 10439 ico0 10441 ioc0 10442 expgt0 10754 expge0 10757 expge1 10758 shftval2 11252 abs3dif 11531 divalgb 12351 nnwodc 12472 ctinf 12916 grpinvcnv 13515 mulgaddcom 13597 mulgneg2 13607 srgrmhm 13871 ringcom 13908 mulgass2 13935 opprrng 13954 opprring 13956 unitmulcl 13990 islmodd 14170 lmodcom 14210 rmodislmod 14228 restin 14763 cnpnei 14806 cnptoprest 14826 psmetsym 14916 xmetsym 14955 |
| Copyright terms: Public domain | W3C validator |