| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1205 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3coml 1213 syld3an2 1297 3anidm13 1309 eqreu 2965 f1ofveu 5932 acexmid 5943 dfsmo2 6373 f1oeng 6848 ctssdc 7215 ltexprlemdisj 7719 ltexprlemfu 7724 recexprlemss1u 7749 mul32 8202 add32 8231 cnegexlem2 8248 subsub23 8277 subadd23 8284 addsub12 8285 subsub 8302 subsub3 8304 sub32 8306 suble 8513 lesub 8514 ltsub23 8515 ltsub13 8516 ltleadd 8519 div32ap 8765 div13ap 8766 div12ap 8767 divdiv32ap 8793 cju 9034 icc0r 10048 fzen 10165 elfz1b 10212 ioo0 10402 ico0 10404 ioc0 10405 expgt0 10717 expge0 10720 expge1 10721 shftval2 11137 abs3dif 11416 divalgb 12236 nnwodc 12357 ctinf 12801 grpinvcnv 13400 mulgaddcom 13482 mulgneg2 13492 srgrmhm 13756 ringcom 13793 mulgass2 13820 opprrng 13839 opprring 13841 unitmulcl 13875 islmodd 14055 lmodcom 14095 rmodislmod 14113 restin 14648 cnpnei 14691 cnptoprest 14711 psmetsym 14801 xmetsym 14840 |
| Copyright terms: Public domain | W3C validator |