| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1204 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2956 f1ofveu 5910 acexmid 5921 dfsmo2 6345 f1oeng 6816 ctssdc 7179 ltexprlemdisj 7673 ltexprlemfu 7678 recexprlemss1u 7703 mul32 8156 add32 8185 cnegexlem2 8202 subsub23 8231 subadd23 8238 addsub12 8239 subsub 8256 subsub3 8258 sub32 8260 suble 8467 lesub 8468 ltsub23 8469 ltsub13 8470 ltleadd 8473 div32ap 8719 div13ap 8720 div12ap 8721 divdiv32ap 8747 cju 8988 icc0r 10001 fzen 10118 elfz1b 10165 ioo0 10349 ico0 10351 ioc0 10352 expgt0 10664 expge0 10667 expge1 10668 shftval2 10991 abs3dif 11270 divalgb 12090 nnwodc 12203 ctinf 12647 grpinvcnv 13200 mulgaddcom 13276 mulgneg2 13286 srgrmhm 13550 ringcom 13587 mulgass2 13614 opprrng 13633 opprring 13635 unitmulcl 13669 islmodd 13849 lmodcom 13889 rmodislmod 13907 restin 14412 cnpnei 14455 cnptoprest 14475 psmetsym 14565 xmetsym 14604 |
| Copyright terms: Public domain | W3C validator |