ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3com23 Unicode version

Theorem 3com23 1211
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3com23  |-  ( (
ph  /\  ch  /\  ps )  ->  th )

Proof of Theorem 3com23
StepHypRef Expression
1 3exp.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213exp 1204 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32com23 78 . 2  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
433imp 1195 1  |-  ( (
ph  /\  ch  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3coml  1212  syld3an2  1296  3anidm13  1307  eqreu  2952  f1ofveu  5906  acexmid  5917  dfsmo2  6340  f1oeng  6811  ctssdc  7172  ltexprlemdisj  7666  ltexprlemfu  7671  recexprlemss1u  7696  mul32  8149  add32  8178  cnegexlem2  8195  subsub23  8224  subadd23  8231  addsub12  8232  subsub  8249  subsub3  8251  sub32  8253  suble  8459  lesub  8460  ltsub23  8461  ltsub13  8462  ltleadd  8465  div32ap  8711  div13ap  8712  div12ap  8713  divdiv32ap  8739  cju  8980  icc0r  9992  fzen  10109  elfz1b  10156  ioo0  10328  ico0  10330  ioc0  10331  expgt0  10643  expge0  10646  expge1  10647  shftval2  10970  abs3dif  11249  divalgb  12066  nnwodc  12173  ctinf  12587  grpinvcnv  13140  mulgaddcom  13216  mulgneg2  13226  srgrmhm  13490  ringcom  13527  mulgass2  13554  opprrng  13573  opprring  13575  unitmulcl  13609  islmodd  13789  lmodcom  13829  rmodislmod  13847  restin  14344  cnpnei  14387  cnptoprest  14407  psmetsym  14497  xmetsym  14536
  Copyright terms: Public domain W3C validator