| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1226 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3coml 1234 syld3an2 1318 3anidm13 1330 eqreu 2995 f1ofveu 5989 acexmid 6000 dfsmo2 6433 f1oeng 6908 ctssdc 7280 ltexprlemdisj 7793 ltexprlemfu 7798 recexprlemss1u 7823 mul32 8276 add32 8305 cnegexlem2 8322 subsub23 8351 subadd23 8358 addsub12 8359 subsub 8376 subsub3 8378 sub32 8380 suble 8587 lesub 8588 ltsub23 8589 ltsub13 8590 ltleadd 8593 div32ap 8839 div13ap 8840 div12ap 8841 divdiv32ap 8867 cju 9108 icc0r 10122 fzen 10239 elfz1b 10286 ioo0 10479 ico0 10481 ioc0 10482 expgt0 10794 expge0 10797 expge1 10798 shftval2 11337 abs3dif 11616 divalgb 12436 nnwodc 12557 ctinf 13001 grpinvcnv 13601 mulgaddcom 13683 mulgneg2 13693 srgrmhm 13957 ringcom 13994 mulgass2 14021 opprrng 14040 opprring 14042 unitmulcl 14077 islmodd 14257 lmodcom 14297 rmodislmod 14315 restin 14850 cnpnei 14893 cnptoprest 14913 psmetsym 15003 xmetsym 15042 |
| Copyright terms: Public domain | W3C validator |