Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3com23 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 | |
2 | 1 | 3exp 1184 | . . 3 |
3 | 2 | com23 78 | . 2 |
4 | 3 | 3imp 1176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3coml 1192 syld3an2 1267 3anidm13 1278 eqreu 2904 f1ofveu 5809 acexmid 5820 dfsmo2 6231 f1oeng 6699 ctssdc 7051 ltexprlemdisj 7520 ltexprlemfu 7525 recexprlemss1u 7550 mul32 7999 add32 8028 cnegexlem2 8045 subsub23 8074 subadd23 8081 addsub12 8082 subsub 8099 subsub3 8101 sub32 8103 suble 8309 lesub 8310 ltsub23 8311 ltsub13 8312 ltleadd 8315 div32ap 8559 div13ap 8560 div12ap 8561 divdiv32ap 8587 cju 8826 icc0r 9823 fzen 9938 elfz1b 9985 ioo0 10152 ico0 10154 ioc0 10155 expgt0 10445 expge0 10448 expge1 10449 shftval2 10719 abs3dif 10998 divalgb 11808 ctinf 12142 restin 12547 cnpnei 12590 cnptoprest 12610 psmetsym 12700 xmetsym 12739 |
Copyright terms: Public domain | W3C validator |