![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3com23 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1204 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | com23 78 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2952 f1ofveu 5906 acexmid 5917 dfsmo2 6340 f1oeng 6811 ctssdc 7172 ltexprlemdisj 7666 ltexprlemfu 7671 recexprlemss1u 7696 mul32 8149 add32 8178 cnegexlem2 8195 subsub23 8224 subadd23 8231 addsub12 8232 subsub 8249 subsub3 8251 sub32 8253 suble 8459 lesub 8460 ltsub23 8461 ltsub13 8462 ltleadd 8465 div32ap 8711 div13ap 8712 div12ap 8713 divdiv32ap 8739 cju 8980 icc0r 9992 fzen 10109 elfz1b 10156 ioo0 10328 ico0 10330 ioc0 10331 expgt0 10643 expge0 10646 expge1 10647 shftval2 10970 abs3dif 11249 divalgb 12066 nnwodc 12173 ctinf 12587 grpinvcnv 13140 mulgaddcom 13216 mulgneg2 13226 srgrmhm 13490 ringcom 13527 mulgass2 13554 opprrng 13573 opprring 13575 unitmulcl 13609 islmodd 13789 lmodcom 13829 rmodislmod 13847 restin 14344 cnpnei 14387 cnptoprest 14407 psmetsym 14497 xmetsym 14536 |
Copyright terms: Public domain | W3C validator |