| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1205 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3coml 1213 syld3an2 1297 3anidm13 1309 eqreu 2965 f1ofveu 5934 acexmid 5945 dfsmo2 6375 f1oeng 6850 ctssdc 7217 ltexprlemdisj 7721 ltexprlemfu 7726 recexprlemss1u 7751 mul32 8204 add32 8233 cnegexlem2 8250 subsub23 8279 subadd23 8286 addsub12 8287 subsub 8304 subsub3 8306 sub32 8308 suble 8515 lesub 8516 ltsub23 8517 ltsub13 8518 ltleadd 8521 div32ap 8767 div13ap 8768 div12ap 8769 divdiv32ap 8795 cju 9036 icc0r 10050 fzen 10167 elfz1b 10214 ioo0 10404 ico0 10406 ioc0 10407 expgt0 10719 expge0 10722 expge1 10723 shftval2 11170 abs3dif 11449 divalgb 12269 nnwodc 12390 ctinf 12834 grpinvcnv 13433 mulgaddcom 13515 mulgneg2 13525 srgrmhm 13789 ringcom 13826 mulgass2 13853 opprrng 13872 opprring 13874 unitmulcl 13908 islmodd 14088 lmodcom 14128 rmodislmod 14146 restin 14681 cnpnei 14724 cnptoprest 14744 psmetsym 14834 xmetsym 14873 |
| Copyright terms: Public domain | W3C validator |