Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3com23 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 | |
2 | 1 | 3exp 1197 | . . 3 |
3 | 2 | com23 78 | . 2 |
4 | 3 | 3imp 1188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3coml 1205 syld3an2 1280 3anidm13 1291 eqreu 2922 f1ofveu 5841 acexmid 5852 dfsmo2 6266 f1oeng 6735 ctssdc 7090 ltexprlemdisj 7568 ltexprlemfu 7573 recexprlemss1u 7598 mul32 8049 add32 8078 cnegexlem2 8095 subsub23 8124 subadd23 8131 addsub12 8132 subsub 8149 subsub3 8151 sub32 8153 suble 8359 lesub 8360 ltsub23 8361 ltsub13 8362 ltleadd 8365 div32ap 8609 div13ap 8610 div12ap 8611 divdiv32ap 8637 cju 8877 icc0r 9883 fzen 9999 elfz1b 10046 ioo0 10216 ico0 10218 ioc0 10219 expgt0 10509 expge0 10512 expge1 10513 shftval2 10790 abs3dif 11069 divalgb 11884 nnwodc 11991 ctinf 12385 grpinvcnv 12767 restin 12970 cnpnei 13013 cnptoprest 13033 psmetsym 13123 xmetsym 13162 |
Copyright terms: Public domain | W3C validator |