| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com23 | Unicode version | ||
| Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . . 4
| |
| 2 | 1 | 3exp 1204 |
. . 3
|
| 3 | 2 | com23 78 |
. 2
|
| 4 | 3 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3coml 1212 syld3an2 1296 3anidm13 1307 eqreu 2956 f1ofveu 5911 acexmid 5922 dfsmo2 6346 f1oeng 6817 ctssdc 7180 ltexprlemdisj 7675 ltexprlemfu 7680 recexprlemss1u 7705 mul32 8158 add32 8187 cnegexlem2 8204 subsub23 8233 subadd23 8240 addsub12 8241 subsub 8258 subsub3 8260 sub32 8262 suble 8469 lesub 8470 ltsub23 8471 ltsub13 8472 ltleadd 8475 div32ap 8721 div13ap 8722 div12ap 8723 divdiv32ap 8749 cju 8990 icc0r 10003 fzen 10120 elfz1b 10167 ioo0 10351 ico0 10353 ioc0 10354 expgt0 10666 expge0 10669 expge1 10670 shftval2 10993 abs3dif 11272 divalgb 12092 nnwodc 12213 ctinf 12657 grpinvcnv 13210 mulgaddcom 13286 mulgneg2 13296 srgrmhm 13560 ringcom 13597 mulgass2 13624 opprrng 13643 opprring 13645 unitmulcl 13679 islmodd 13859 lmodcom 13899 rmodislmod 13917 restin 14422 cnpnei 14465 cnptoprest 14485 psmetsym 14575 xmetsym 14614 |
| Copyright terms: Public domain | W3C validator |