| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm23 | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 |
|
| Ref | Expression |
|---|---|
| 3anidm23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 |
. . 3
| |
| 2 | 1 | 3expa 1205 |
. 2
|
| 3 | 2 | anabss3 585 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: efrirr 4389 subeq0 8269 halfaddsub 9242 avglt2 9248 efsub 11863 sinmul 11926 pythagtriplem4 12462 pythagtriplem16 12473 xmet0 14683 |
| Copyright terms: Public domain | W3C validator |