Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anidm23 | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 |
Ref | Expression |
---|---|
3anidm23 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 | |
2 | 1 | 3expa 1193 | . 2 |
3 | 2 | anabss3 575 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: efrirr 4331 subeq0 8124 halfaddsub 9091 avglt2 9096 efsub 11622 sinmul 11685 pythagtriplem4 12200 pythagtriplem16 12211 xmet0 13003 |
Copyright terms: Public domain | W3C validator |