ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm23 Unicode version

Theorem 3anidm23 1287
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.)
Hypothesis
Ref Expression
3anidm23.1  |-  ( (
ph  /\  ps  /\  ps )  ->  ch )
Assertion
Ref Expression
3anidm23  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem 3anidm23
StepHypRef Expression
1 3anidm23.1 . . 3  |-  ( (
ph  /\  ps  /\  ps )  ->  ch )
213expa 1193 . 2  |-  ( ( ( ph  /\  ps )  /\  ps )  ->  ch )
32anabss3 575 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  efrirr  4331  subeq0  8124  halfaddsub  9091  avglt2  9096  efsub  11622  sinmul  11685  pythagtriplem4  12200  pythagtriplem16  12211  xmet0  13003
  Copyright terms: Public domain W3C validator