ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm23 Unicode version

Theorem 3anidm23 1308
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.)
Hypothesis
Ref Expression
3anidm23.1  |-  ( (
ph  /\  ps  /\  ps )  ->  ch )
Assertion
Ref Expression
3anidm23  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem 3anidm23
StepHypRef Expression
1 3anidm23.1 . . 3  |-  ( (
ph  /\  ps  /\  ps )  ->  ch )
213expa 1205 . 2  |-  ( ( ( ph  /\  ps )  /\  ps )  ->  ch )
32anabss3 585 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  efrirr  4384  subeq0  8245  halfaddsub  9216  avglt2  9222  efsub  11824  sinmul  11887  pythagtriplem4  12406  pythagtriplem16  12417  xmet0  14531
  Copyright terms: Public domain W3C validator