Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2ri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr2i.1 | |
3eqtr2i.2 | |
3eqtr2i.3 |
Ref | Expression |
---|---|
3eqtr2ri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 | |
2 | 3eqtr2i.2 | . . 3 | |
3 | 1, 2 | eqtr4i 2194 | . 2 |
4 | 3eqtr2i.3 | . 2 | |
5 | 3, 4 | eqtr2i 2192 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: funimacnv 5274 uniqs 6571 ef01bndlem 11719 cos2bnd 11723 sinhalfpilem 13506 |
Copyright terms: Public domain | W3C validator |