ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2bnd Unicode version

Theorem cos2bnd 11990
Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos2bnd  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )

Proof of Theorem cos2bnd
StepHypRef Expression
1 7cn 9102 . . . . . 6  |-  7  e.  CC
2 9cn 9106 . . . . . 6  |-  9  e.  CC
3 9re 9105 . . . . . . 7  |-  9  e.  RR
4 9pos 9122 . . . . . . 7  |-  0  <  9
53, 4gt0ap0ii 8683 . . . . . 6  |-  9 #  0
6 divnegap 8761 . . . . . 6  |-  ( ( 7  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
7  /  9 )  =  ( -u 7  /  9 ) )
71, 2, 5, 6mp3an 1349 . . . . 5  |-  -u (
7  /  9 )  =  ( -u 7  /  9 )
8 2cn 9089 . . . . . . 7  |-  2  e.  CC
92, 5pm3.2i 272 . . . . . . 7  |-  ( 9  e.  CC  /\  9 #  0 )
10 divsubdirap 8763 . . . . . . 7  |-  ( ( 2  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 2  -  9 )  /  9
)  =  ( ( 2  /  9 )  -  ( 9  / 
9 ) ) )
118, 2, 9, 10mp3an 1349 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( ( 2  / 
9 )  -  (
9  /  9 ) )
122, 8negsubdi2i 8340 . . . . . . . 8  |-  -u (
9  -  2 )  =  ( 2  -  9 )
13 7p2e9 9170 . . . . . . . . . 10  |-  ( 7  +  2 )  =  9
142, 8, 1subadd2i 8342 . . . . . . . . . 10  |-  ( ( 9  -  2 )  =  7  <->  ( 7  +  2 )  =  9 )
1513, 14mpbir 146 . . . . . . . . 9  |-  ( 9  -  2 )  =  7
1615negeqi 8248 . . . . . . . 8  |-  -u (
9  -  2 )  =  -u 7
1712, 16eqtr3i 2227 . . . . . . 7  |-  ( 2  -  9 )  = 
-u 7
1817oveq1i 5944 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( -u 7  / 
9 )
1911, 18eqtr3i 2227 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( -u 7  / 
9 )
202, 5dividapi 8800 . . . . . 6  |-  ( 9  /  9 )  =  1
2120oveq2i 5945 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 2  / 
9 )  -  1 )
227, 19, 213eqtr2ri 2232 . . . 4  |-  ( ( 2  /  9 )  -  1 )  = 
-u ( 7  / 
9 )
23 ax-1cn 8000 . . . . . . . 8  |-  1  e.  CC
248, 23, 2, 5divassapi 8823 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  x.  (
1  /  9 ) )
25 2t1e2 9172 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
2625oveq1i 5944 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  /  9
)
2724, 26eqtr3i 2227 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  =  ( 2  /  9
)
28 3cn 9093 . . . . . . . . . 10  |-  3  e.  CC
29 3ap0 9114 . . . . . . . . . 10  |-  3 #  0
3023, 28, 29sqdivapi 10749 . . . . . . . . 9  |-  ( ( 1  /  3 ) ^ 2 )  =  ( ( 1 ^ 2 )  /  (
3 ^ 2 ) )
31 sq1 10759 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
32 sq3 10762 . . . . . . . . . 10  |-  ( 3 ^ 2 )  =  9
3331, 32oveq12i 5946 . . . . . . . . 9  |-  ( ( 1 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 1  /  9
)
3430, 33eqtri 2225 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  =  ( 1  /  9
)
35 cos1bnd 11989 . . . . . . . . . 10  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
3635simpli 111 . . . . . . . . 9  |-  ( 1  /  3 )  < 
( cos `  1
)
37 0le1 8536 . . . . . . . . . . 11  |-  0  <_  1
38 3pos 9112 . . . . . . . . . . 11  |-  0  <  3
39 1re 8053 . . . . . . . . . . . 12  |-  1  e.  RR
40 3re 9092 . . . . . . . . . . . 12  |-  3  e.  RR
4139, 40divge0i 8966 . . . . . . . . . . 11  |-  ( ( 0  <_  1  /\  0  <  3 )  -> 
0  <_  ( 1  /  3 ) )
4237, 38, 41mp2an 426 . . . . . . . . . 10  |-  0  <_  ( 1  /  3
)
43 0re 8054 . . . . . . . . . . 11  |-  0  e.  RR
44 recoscl 11951 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( cos `  1 )  e.  RR )
4539, 44ax-mp 5 . . . . . . . . . . 11  |-  ( cos `  1 )  e.  RR
4640, 29rerecclapi 8832 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  RR
4743, 46, 45lelttri 8160 . . . . . . . . . . . 12  |-  ( ( 0  <_  ( 1  /  3 )  /\  ( 1  /  3
)  <  ( cos `  1 ) )  -> 
0  <  ( cos `  1 ) )
4842, 36, 47mp2an 426 . . . . . . . . . . 11  |-  0  <  ( cos `  1
)
4943, 45, 48ltleii 8157 . . . . . . . . . 10  |-  0  <_  ( cos `  1
)
5046, 45lt2sqi 10753 . . . . . . . . . 10  |-  ( ( 0  <_  ( 1  /  3 )  /\  0  <_  ( cos `  1
) )  ->  (
( 1  /  3
)  <  ( cos `  1 )  <->  ( (
1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 ) ) )
5142, 49, 50mp2an 426 . . . . . . . . 9  |-  ( ( 1  /  3 )  <  ( cos `  1
)  <->  ( ( 1  /  3 ) ^
2 )  <  (
( cos `  1
) ^ 2 ) )
5236, 51mpbi 145 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 )
5334, 52eqbrtrri 4066 . . . . . . 7  |-  ( 1  /  9 )  < 
( ( cos `  1
) ^ 2 )
54 2pos 9109 . . . . . . . 8  |-  0  <  2
553, 5rerecclapi 8832 . . . . . . . . 9  |-  ( 1  /  9 )  e.  RR
5645resqcli 10750 . . . . . . . . 9  |-  ( ( cos `  1 ) ^ 2 )  e.  RR
57 2re 9088 . . . . . . . . 9  |-  2  e.  RR
5855, 56, 57ltmul2i 8978 . . . . . . . 8  |-  ( 0  <  2  ->  (
( 1  /  9
)  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) ) )
5954, 58ax-mp 5 . . . . . . 7  |-  ( ( 1  /  9 )  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) )
6053, 59mpbi 145 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6127, 60eqbrtrri 4066 . . . . 5  |-  ( 2  /  9 )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6257, 3, 5redivclapi 8834 . . . . . 6  |-  ( 2  /  9 )  e.  RR
6357, 56remulcli 8068 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  e.  RR
64 ltsub1 8513 . . . . . 6  |-  ( ( ( 2  /  9
)  e.  RR  /\  ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  / 
9 )  <  (
2  x.  ( ( cos `  1 ) ^ 2 ) )  <-> 
( ( 2  / 
9 )  -  1 )  <  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 ) ) )
6562, 63, 39, 64mp3an 1349 . . . . 5  |-  ( ( 2  /  9 )  <  ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <->  ( ( 2  /  9 )  - 
1 )  <  (
( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 ) )
6661, 65mpbi 145 . . . 4  |-  ( ( 2  /  9 )  -  1 )  < 
( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
6722, 66eqbrtrri 4066 . . 3  |-  -u (
7  /  9 )  <  ( ( 2  x.  ( ( cos `  1 ) ^
2 ) )  - 
1 )
6825fveq2i 5573 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( cos `  2 )
69 cos2t 11980 . . . . 5  |-  ( 1  e.  CC  ->  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 ) )
7023, 69ax-mp 5 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 )
7168, 70eqtr3i 2227 . . 3  |-  ( cos `  2 )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
7267, 71breqtrri 4070 . 2  |-  -u (
7  /  9 )  <  ( cos `  2
)
7335simpri 113 . . . . . . . . 9  |-  ( cos `  1 )  < 
( 2  /  3
)
74 0le2 9108 . . . . . . . . . . 11  |-  0  <_  2
7557, 40divge0i 8966 . . . . . . . . . . 11  |-  ( ( 0  <_  2  /\  0  <  3 )  -> 
0  <_  ( 2  /  3 ) )
7674, 38, 75mp2an 426 . . . . . . . . . 10  |-  0  <_  ( 2  /  3
)
7757, 40, 29redivclapi 8834 . . . . . . . . . . 11  |-  ( 2  /  3 )  e.  RR
7845, 77lt2sqi 10753 . . . . . . . . . 10  |-  ( ( 0  <_  ( cos `  1 )  /\  0  <_  ( 2  /  3
) )  ->  (
( cos `  1
)  <  ( 2  /  3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) ) )
7949, 76, 78mp2an 426 . . . . . . . . 9  |-  ( ( cos `  1 )  <  ( 2  / 
3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) )
8073, 79mpbi 145 . . . . . . . 8  |-  ( ( cos `  1 ) ^ 2 )  < 
( ( 2  / 
3 ) ^ 2 )
818, 28, 29sqdivapi 10749 . . . . . . . . 9  |-  ( ( 2  /  3 ) ^ 2 )  =  ( ( 2 ^ 2 )  /  (
3 ^ 2 ) )
82 sq2 10761 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
8382, 32oveq12i 5946 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 4  /  9
)
8481, 83eqtri 2225 . . . . . . . 8  |-  ( ( 2  /  3 ) ^ 2 )  =  ( 4  /  9
)
8580, 84breqtri 4068 . . . . . . 7  |-  ( ( cos `  1 ) ^ 2 )  < 
( 4  /  9
)
86 4re 9095 . . . . . . . . . 10  |-  4  e.  RR
8786, 3, 5redivclapi 8834 . . . . . . . . 9  |-  ( 4  /  9 )  e.  RR
8856, 87, 57ltmul2i 8978 . . . . . . . 8  |-  ( 0  <  2  ->  (
( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) ) )
8954, 88ax-mp 5 . . . . . . 7  |-  ( ( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) )
9085, 89mpbi 145 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) )
91 4cn 9096 . . . . . . . 8  |-  4  e.  CC
928, 91, 2, 5divassapi 8823 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 2  x.  (
4  /  9 ) )
93 4t2e8 9177 . . . . . . . . 9  |-  ( 4  x.  2 )  =  8
9491, 8, 93mulcomli 8061 . . . . . . . 8  |-  ( 2  x.  4 )  =  8
9594oveq1i 5944 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 8  /  9
)
9692, 95eqtr3i 2227 . . . . . 6  |-  ( 2  x.  ( 4  / 
9 ) )  =  ( 8  /  9
)
9790, 96breqtri 4068 . . . . 5  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 8  /  9
)
98 8re 9103 . . . . . . 7  |-  8  e.  RR
9998, 3, 5redivclapi 8834 . . . . . 6  |-  ( 8  /  9 )  e.  RR
100 ltsub1 8513 . . . . . 6  |-  ( ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  ( 8  /  9
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <  ( 8  /  9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) ) )
10163, 99, 39, 100mp3an 1349 . . . . 5  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  <  ( 8  / 
9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) )
10297, 101mpbi 145 . . . 4  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 )
10320oveq2i 5945 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 8  / 
9 )  -  1 )
104 divnegap 8761 . . . . . . 7  |-  ( ( 1  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
1  /  9 )  =  ( -u 1  /  9 ) )
10523, 2, 5, 104mp3an 1349 . . . . . 6  |-  -u (
1  /  9 )  =  ( -u 1  /  9 )
106 8cn 9104 . . . . . . . . 9  |-  8  e.  CC
1072, 106negsubdi2i 8340 . . . . . . . 8  |-  -u (
9  -  8 )  =  ( 8  -  9 )
108 8p1e9 9159 . . . . . . . . . 10  |-  ( 8  +  1 )  =  9
1092, 106, 23, 108subaddrii 8343 . . . . . . . . 9  |-  ( 9  -  8 )  =  1
110109negeqi 8248 . . . . . . . 8  |-  -u (
9  -  8 )  =  -u 1
111107, 110eqtr3i 2227 . . . . . . 7  |-  ( 8  -  9 )  = 
-u 1
112111oveq1i 5944 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( -u 1  / 
9 )
113 divsubdirap 8763 . . . . . . 7  |-  ( ( 8  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 8  -  9 )  /  9
)  =  ( ( 8  /  9 )  -  ( 9  / 
9 ) ) )
114106, 2, 9, 113mp3an 1349 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( ( 8  / 
9 )  -  (
9  /  9 ) )
115105, 112, 1143eqtr2ri 2232 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  = 
-u ( 1  / 
9 )
116103, 115eqtr3i 2227 . . . 4  |-  ( ( 8  /  9 )  -  1 )  = 
-u ( 1  / 
9 )
117102, 116breqtri 4068 . . 3  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  <  -u ( 1  /  9
)
11871, 117eqbrtri 4064 . 2  |-  ( cos `  2 )  <  -u ( 1  /  9
)
11972, 118pm3.2i 272 1  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905   RRcr 7906   0cc0 7907   1c1 7908    + caddc 7910    x. cmul 7912    < clt 8089    <_ cle 8090    - cmin 8225   -ucneg 8226   # cap 8636    / cdiv 8727   2c2 9069   3c3 9070   4c4 9071   7c7 9074   8c8 9075   9c9 9076   ^cexp 10664   cosccos 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-sup 7068  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-ioc 9997  df-ico 9998  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-bc 10874  df-ihash 10902  df-shft 11045  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880  df-cos 11881
This theorem is referenced by:  sincos2sgn  11996
  Copyright terms: Public domain W3C validator