ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2bnd Unicode version

Theorem cos2bnd 11723
Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos2bnd  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )

Proof of Theorem cos2bnd
StepHypRef Expression
1 7cn 8962 . . . . . 6  |-  7  e.  CC
2 9cn 8966 . . . . . 6  |-  9  e.  CC
3 9re 8965 . . . . . . 7  |-  9  e.  RR
4 9pos 8982 . . . . . . 7  |-  0  <  9
53, 4gt0ap0ii 8547 . . . . . 6  |-  9 #  0
6 divnegap 8623 . . . . . 6  |-  ( ( 7  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
7  /  9 )  =  ( -u 7  /  9 ) )
71, 2, 5, 6mp3an 1332 . . . . 5  |-  -u (
7  /  9 )  =  ( -u 7  /  9 )
8 2cn 8949 . . . . . . 7  |-  2  e.  CC
92, 5pm3.2i 270 . . . . . . 7  |-  ( 9  e.  CC  /\  9 #  0 )
10 divsubdirap 8625 . . . . . . 7  |-  ( ( 2  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 2  -  9 )  /  9
)  =  ( ( 2  /  9 )  -  ( 9  / 
9 ) ) )
118, 2, 9, 10mp3an 1332 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( ( 2  / 
9 )  -  (
9  /  9 ) )
122, 8negsubdi2i 8205 . . . . . . . 8  |-  -u (
9  -  2 )  =  ( 2  -  9 )
13 7p2e9 9029 . . . . . . . . . 10  |-  ( 7  +  2 )  =  9
142, 8, 1subadd2i 8207 . . . . . . . . . 10  |-  ( ( 9  -  2 )  =  7  <->  ( 7  +  2 )  =  9 )
1513, 14mpbir 145 . . . . . . . . 9  |-  ( 9  -  2 )  =  7
1615negeqi 8113 . . . . . . . 8  |-  -u (
9  -  2 )  =  -u 7
1712, 16eqtr3i 2193 . . . . . . 7  |-  ( 2  -  9 )  = 
-u 7
1817oveq1i 5863 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( -u 7  / 
9 )
1911, 18eqtr3i 2193 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( -u 7  / 
9 )
202, 5dividapi 8662 . . . . . 6  |-  ( 9  /  9 )  =  1
2120oveq2i 5864 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 2  / 
9 )  -  1 )
227, 19, 213eqtr2ri 2198 . . . 4  |-  ( ( 2  /  9 )  -  1 )  = 
-u ( 7  / 
9 )
23 ax-1cn 7867 . . . . . . . 8  |-  1  e.  CC
248, 23, 2, 5divassapi 8685 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  x.  (
1  /  9 ) )
25 2t1e2 9031 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
2625oveq1i 5863 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  /  9
)
2724, 26eqtr3i 2193 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  =  ( 2  /  9
)
28 3cn 8953 . . . . . . . . . 10  |-  3  e.  CC
29 3ap0 8974 . . . . . . . . . 10  |-  3 #  0
3023, 28, 29sqdivapi 10559 . . . . . . . . 9  |-  ( ( 1  /  3 ) ^ 2 )  =  ( ( 1 ^ 2 )  /  (
3 ^ 2 ) )
31 sq1 10569 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
32 sq3 10572 . . . . . . . . . 10  |-  ( 3 ^ 2 )  =  9
3331, 32oveq12i 5865 . . . . . . . . 9  |-  ( ( 1 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 1  /  9
)
3430, 33eqtri 2191 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  =  ( 1  /  9
)
35 cos1bnd 11722 . . . . . . . . . 10  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
3635simpli 110 . . . . . . . . 9  |-  ( 1  /  3 )  < 
( cos `  1
)
37 0le1 8400 . . . . . . . . . . 11  |-  0  <_  1
38 3pos 8972 . . . . . . . . . . 11  |-  0  <  3
39 1re 7919 . . . . . . . . . . . 12  |-  1  e.  RR
40 3re 8952 . . . . . . . . . . . 12  |-  3  e.  RR
4139, 40divge0i 8827 . . . . . . . . . . 11  |-  ( ( 0  <_  1  /\  0  <  3 )  -> 
0  <_  ( 1  /  3 ) )
4237, 38, 41mp2an 424 . . . . . . . . . 10  |-  0  <_  ( 1  /  3
)
43 0re 7920 . . . . . . . . . . 11  |-  0  e.  RR
44 recoscl 11684 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( cos `  1 )  e.  RR )
4539, 44ax-mp 5 . . . . . . . . . . 11  |-  ( cos `  1 )  e.  RR
4640, 29rerecclapi 8694 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  RR
4743, 46, 45lelttri 8025 . . . . . . . . . . . 12  |-  ( ( 0  <_  ( 1  /  3 )  /\  ( 1  /  3
)  <  ( cos `  1 ) )  -> 
0  <  ( cos `  1 ) )
4842, 36, 47mp2an 424 . . . . . . . . . . 11  |-  0  <  ( cos `  1
)
4943, 45, 48ltleii 8022 . . . . . . . . . 10  |-  0  <_  ( cos `  1
)
5046, 45lt2sqi 10563 . . . . . . . . . 10  |-  ( ( 0  <_  ( 1  /  3 )  /\  0  <_  ( cos `  1
) )  ->  (
( 1  /  3
)  <  ( cos `  1 )  <->  ( (
1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 ) ) )
5142, 49, 50mp2an 424 . . . . . . . . 9  |-  ( ( 1  /  3 )  <  ( cos `  1
)  <->  ( ( 1  /  3 ) ^
2 )  <  (
( cos `  1
) ^ 2 ) )
5236, 51mpbi 144 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 )
5334, 52eqbrtrri 4012 . . . . . . 7  |-  ( 1  /  9 )  < 
( ( cos `  1
) ^ 2 )
54 2pos 8969 . . . . . . . 8  |-  0  <  2
553, 5rerecclapi 8694 . . . . . . . . 9  |-  ( 1  /  9 )  e.  RR
5645resqcli 10560 . . . . . . . . 9  |-  ( ( cos `  1 ) ^ 2 )  e.  RR
57 2re 8948 . . . . . . . . 9  |-  2  e.  RR
5855, 56, 57ltmul2i 8839 . . . . . . . 8  |-  ( 0  <  2  ->  (
( 1  /  9
)  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) ) )
5954, 58ax-mp 5 . . . . . . 7  |-  ( ( 1  /  9 )  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) )
6053, 59mpbi 144 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6127, 60eqbrtrri 4012 . . . . 5  |-  ( 2  /  9 )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6257, 3, 5redivclapi 8696 . . . . . 6  |-  ( 2  /  9 )  e.  RR
6357, 56remulcli 7934 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  e.  RR
64 ltsub1 8377 . . . . . 6  |-  ( ( ( 2  /  9
)  e.  RR  /\  ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  / 
9 )  <  (
2  x.  ( ( cos `  1 ) ^ 2 ) )  <-> 
( ( 2  / 
9 )  -  1 )  <  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 ) ) )
6562, 63, 39, 64mp3an 1332 . . . . 5  |-  ( ( 2  /  9 )  <  ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <->  ( ( 2  /  9 )  - 
1 )  <  (
( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 ) )
6661, 65mpbi 144 . . . 4  |-  ( ( 2  /  9 )  -  1 )  < 
( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
6722, 66eqbrtrri 4012 . . 3  |-  -u (
7  /  9 )  <  ( ( 2  x.  ( ( cos `  1 ) ^
2 ) )  - 
1 )
6825fveq2i 5499 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( cos `  2 )
69 cos2t 11713 . . . . 5  |-  ( 1  e.  CC  ->  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 ) )
7023, 69ax-mp 5 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 )
7168, 70eqtr3i 2193 . . 3  |-  ( cos `  2 )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
7267, 71breqtrri 4016 . 2  |-  -u (
7  /  9 )  <  ( cos `  2
)
7335simpri 112 . . . . . . . . 9  |-  ( cos `  1 )  < 
( 2  /  3
)
74 0le2 8968 . . . . . . . . . . 11  |-  0  <_  2
7557, 40divge0i 8827 . . . . . . . . . . 11  |-  ( ( 0  <_  2  /\  0  <  3 )  -> 
0  <_  ( 2  /  3 ) )
7674, 38, 75mp2an 424 . . . . . . . . . 10  |-  0  <_  ( 2  /  3
)
7757, 40, 29redivclapi 8696 . . . . . . . . . . 11  |-  ( 2  /  3 )  e.  RR
7845, 77lt2sqi 10563 . . . . . . . . . 10  |-  ( ( 0  <_  ( cos `  1 )  /\  0  <_  ( 2  /  3
) )  ->  (
( cos `  1
)  <  ( 2  /  3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) ) )
7949, 76, 78mp2an 424 . . . . . . . . 9  |-  ( ( cos `  1 )  <  ( 2  / 
3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) )
8073, 79mpbi 144 . . . . . . . 8  |-  ( ( cos `  1 ) ^ 2 )  < 
( ( 2  / 
3 ) ^ 2 )
818, 28, 29sqdivapi 10559 . . . . . . . . 9  |-  ( ( 2  /  3 ) ^ 2 )  =  ( ( 2 ^ 2 )  /  (
3 ^ 2 ) )
82 sq2 10571 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
8382, 32oveq12i 5865 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 4  /  9
)
8481, 83eqtri 2191 . . . . . . . 8  |-  ( ( 2  /  3 ) ^ 2 )  =  ( 4  /  9
)
8580, 84breqtri 4014 . . . . . . 7  |-  ( ( cos `  1 ) ^ 2 )  < 
( 4  /  9
)
86 4re 8955 . . . . . . . . . 10  |-  4  e.  RR
8786, 3, 5redivclapi 8696 . . . . . . . . 9  |-  ( 4  /  9 )  e.  RR
8856, 87, 57ltmul2i 8839 . . . . . . . 8  |-  ( 0  <  2  ->  (
( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) ) )
8954, 88ax-mp 5 . . . . . . 7  |-  ( ( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) )
9085, 89mpbi 144 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) )
91 4cn 8956 . . . . . . . 8  |-  4  e.  CC
928, 91, 2, 5divassapi 8685 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 2  x.  (
4  /  9 ) )
93 4t2e8 9036 . . . . . . . . 9  |-  ( 4  x.  2 )  =  8
9491, 8, 93mulcomli 7927 . . . . . . . 8  |-  ( 2  x.  4 )  =  8
9594oveq1i 5863 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 8  /  9
)
9692, 95eqtr3i 2193 . . . . . 6  |-  ( 2  x.  ( 4  / 
9 ) )  =  ( 8  /  9
)
9790, 96breqtri 4014 . . . . 5  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 8  /  9
)
98 8re 8963 . . . . . . 7  |-  8  e.  RR
9998, 3, 5redivclapi 8696 . . . . . 6  |-  ( 8  /  9 )  e.  RR
100 ltsub1 8377 . . . . . 6  |-  ( ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  ( 8  /  9
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <  ( 8  /  9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) ) )
10163, 99, 39, 100mp3an 1332 . . . . 5  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  <  ( 8  / 
9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) )
10297, 101mpbi 144 . . . 4  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 )
10320oveq2i 5864 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 8  / 
9 )  -  1 )
104 divnegap 8623 . . . . . . 7  |-  ( ( 1  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
1  /  9 )  =  ( -u 1  /  9 ) )
10523, 2, 5, 104mp3an 1332 . . . . . 6  |-  -u (
1  /  9 )  =  ( -u 1  /  9 )
106 8cn 8964 . . . . . . . . 9  |-  8  e.  CC
1072, 106negsubdi2i 8205 . . . . . . . 8  |-  -u (
9  -  8 )  =  ( 8  -  9 )
108 8p1e9 9018 . . . . . . . . . 10  |-  ( 8  +  1 )  =  9
1092, 106, 23, 108subaddrii 8208 . . . . . . . . 9  |-  ( 9  -  8 )  =  1
110109negeqi 8113 . . . . . . . 8  |-  -u (
9  -  8 )  =  -u 1
111107, 110eqtr3i 2193 . . . . . . 7  |-  ( 8  -  9 )  = 
-u 1
112111oveq1i 5863 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( -u 1  / 
9 )
113 divsubdirap 8625 . . . . . . 7  |-  ( ( 8  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 8  -  9 )  /  9
)  =  ( ( 8  /  9 )  -  ( 9  / 
9 ) ) )
114106, 2, 9, 113mp3an 1332 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( ( 8  / 
9 )  -  (
9  /  9 ) )
115105, 112, 1143eqtr2ri 2198 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  = 
-u ( 1  / 
9 )
116103, 115eqtr3i 2193 . . . 4  |-  ( ( 8  /  9 )  -  1 )  = 
-u ( 1  / 
9 )
117102, 116breqtri 4014 . . 3  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  <  -u ( 1  /  9
)
11871, 117eqbrtri 4010 . 2  |-  ( cos `  2 )  <  -u ( 1  /  9
)
11972, 118pm3.2i 270 1  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   2c2 8929   3c3 8930   4c4 8931   7c7 8934   8c8 8935   9c9 8936   ^cexp 10475   cosccos 11608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ioc 9850  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614
This theorem is referenced by:  sincos2sgn  11728
  Copyright terms: Public domain W3C validator