ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2bnd Unicode version

Theorem cos2bnd 11701
Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos2bnd  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )

Proof of Theorem cos2bnd
StepHypRef Expression
1 7cn 8941 . . . . . 6  |-  7  e.  CC
2 9cn 8945 . . . . . 6  |-  9  e.  CC
3 9re 8944 . . . . . . 7  |-  9  e.  RR
4 9pos 8961 . . . . . . 7  |-  0  <  9
53, 4gt0ap0ii 8526 . . . . . 6  |-  9 #  0
6 divnegap 8602 . . . . . 6  |-  ( ( 7  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
7  /  9 )  =  ( -u 7  /  9 ) )
71, 2, 5, 6mp3an 1327 . . . . 5  |-  -u (
7  /  9 )  =  ( -u 7  /  9 )
8 2cn 8928 . . . . . . 7  |-  2  e.  CC
92, 5pm3.2i 270 . . . . . . 7  |-  ( 9  e.  CC  /\  9 #  0 )
10 divsubdirap 8604 . . . . . . 7  |-  ( ( 2  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 2  -  9 )  /  9
)  =  ( ( 2  /  9 )  -  ( 9  / 
9 ) ) )
118, 2, 9, 10mp3an 1327 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( ( 2  / 
9 )  -  (
9  /  9 ) )
122, 8negsubdi2i 8184 . . . . . . . 8  |-  -u (
9  -  2 )  =  ( 2  -  9 )
13 7p2e9 9008 . . . . . . . . . 10  |-  ( 7  +  2 )  =  9
142, 8, 1subadd2i 8186 . . . . . . . . . 10  |-  ( ( 9  -  2 )  =  7  <->  ( 7  +  2 )  =  9 )
1513, 14mpbir 145 . . . . . . . . 9  |-  ( 9  -  2 )  =  7
1615negeqi 8092 . . . . . . . 8  |-  -u (
9  -  2 )  =  -u 7
1712, 16eqtr3i 2188 . . . . . . 7  |-  ( 2  -  9 )  = 
-u 7
1817oveq1i 5852 . . . . . 6  |-  ( ( 2  -  9 )  /  9 )  =  ( -u 7  / 
9 )
1911, 18eqtr3i 2188 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( -u 7  / 
9 )
202, 5dividapi 8641 . . . . . 6  |-  ( 9  /  9 )  =  1
2120oveq2i 5853 . . . . 5  |-  ( ( 2  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 2  / 
9 )  -  1 )
227, 19, 213eqtr2ri 2193 . . . 4  |-  ( ( 2  /  9 )  -  1 )  = 
-u ( 7  / 
9 )
23 ax-1cn 7846 . . . . . . . 8  |-  1  e.  CC
248, 23, 2, 5divassapi 8664 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  x.  (
1  /  9 ) )
25 2t1e2 9010 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
2625oveq1i 5852 . . . . . . 7  |-  ( ( 2  x.  1 )  /  9 )  =  ( 2  /  9
)
2724, 26eqtr3i 2188 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  =  ( 2  /  9
)
28 3cn 8932 . . . . . . . . . 10  |-  3  e.  CC
29 3ap0 8953 . . . . . . . . . 10  |-  3 #  0
3023, 28, 29sqdivapi 10538 . . . . . . . . 9  |-  ( ( 1  /  3 ) ^ 2 )  =  ( ( 1 ^ 2 )  /  (
3 ^ 2 ) )
31 sq1 10548 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
32 sq3 10551 . . . . . . . . . 10  |-  ( 3 ^ 2 )  =  9
3331, 32oveq12i 5854 . . . . . . . . 9  |-  ( ( 1 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 1  /  9
)
3430, 33eqtri 2186 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  =  ( 1  /  9
)
35 cos1bnd 11700 . . . . . . . . . 10  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
3635simpli 110 . . . . . . . . 9  |-  ( 1  /  3 )  < 
( cos `  1
)
37 0le1 8379 . . . . . . . . . . 11  |-  0  <_  1
38 3pos 8951 . . . . . . . . . . 11  |-  0  <  3
39 1re 7898 . . . . . . . . . . . 12  |-  1  e.  RR
40 3re 8931 . . . . . . . . . . . 12  |-  3  e.  RR
4139, 40divge0i 8806 . . . . . . . . . . 11  |-  ( ( 0  <_  1  /\  0  <  3 )  -> 
0  <_  ( 1  /  3 ) )
4237, 38, 41mp2an 423 . . . . . . . . . 10  |-  0  <_  ( 1  /  3
)
43 0re 7899 . . . . . . . . . . 11  |-  0  e.  RR
44 recoscl 11662 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  ( cos `  1 )  e.  RR )
4539, 44ax-mp 5 . . . . . . . . . . 11  |-  ( cos `  1 )  e.  RR
4640, 29rerecclapi 8673 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  RR
4743, 46, 45lelttri 8004 . . . . . . . . . . . 12  |-  ( ( 0  <_  ( 1  /  3 )  /\  ( 1  /  3
)  <  ( cos `  1 ) )  -> 
0  <  ( cos `  1 ) )
4842, 36, 47mp2an 423 . . . . . . . . . . 11  |-  0  <  ( cos `  1
)
4943, 45, 48ltleii 8001 . . . . . . . . . 10  |-  0  <_  ( cos `  1
)
5046, 45lt2sqi 10542 . . . . . . . . . 10  |-  ( ( 0  <_  ( 1  /  3 )  /\  0  <_  ( cos `  1
) )  ->  (
( 1  /  3
)  <  ( cos `  1 )  <->  ( (
1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 ) ) )
5142, 49, 50mp2an 423 . . . . . . . . 9  |-  ( ( 1  /  3 )  <  ( cos `  1
)  <->  ( ( 1  /  3 ) ^
2 )  <  (
( cos `  1
) ^ 2 ) )
5236, 51mpbi 144 . . . . . . . 8  |-  ( ( 1  /  3 ) ^ 2 )  < 
( ( cos `  1
) ^ 2 )
5334, 52eqbrtrri 4005 . . . . . . 7  |-  ( 1  /  9 )  < 
( ( cos `  1
) ^ 2 )
54 2pos 8948 . . . . . . . 8  |-  0  <  2
553, 5rerecclapi 8673 . . . . . . . . 9  |-  ( 1  /  9 )  e.  RR
5645resqcli 10539 . . . . . . . . 9  |-  ( ( cos `  1 ) ^ 2 )  e.  RR
57 2re 8927 . . . . . . . . 9  |-  2  e.  RR
5855, 56, 57ltmul2i 8818 . . . . . . . 8  |-  ( 0  <  2  ->  (
( 1  /  9
)  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) ) )
5954, 58ax-mp 5 . . . . . . 7  |-  ( ( 1  /  9 )  <  ( ( cos `  1 ) ^
2 )  <->  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) ) )
6053, 59mpbi 144 . . . . . 6  |-  ( 2  x.  ( 1  / 
9 ) )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6127, 60eqbrtrri 4005 . . . . 5  |-  ( 2  /  9 )  < 
( 2  x.  (
( cos `  1
) ^ 2 ) )
6257, 3, 5redivclapi 8675 . . . . . 6  |-  ( 2  /  9 )  e.  RR
6357, 56remulcli 7913 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  e.  RR
64 ltsub1 8356 . . . . . 6  |-  ( ( ( 2  /  9
)  e.  RR  /\  ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  / 
9 )  <  (
2  x.  ( ( cos `  1 ) ^ 2 ) )  <-> 
( ( 2  / 
9 )  -  1 )  <  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 ) ) )
6562, 63, 39, 64mp3an 1327 . . . . 5  |-  ( ( 2  /  9 )  <  ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <->  ( ( 2  /  9 )  - 
1 )  <  (
( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 ) )
6661, 65mpbi 144 . . . 4  |-  ( ( 2  /  9 )  -  1 )  < 
( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
6722, 66eqbrtrri 4005 . . 3  |-  -u (
7  /  9 )  <  ( ( 2  x.  ( ( cos `  1 ) ^
2 ) )  - 
1 )
6825fveq2i 5489 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( cos `  2 )
69 cos2t 11691 . . . . 5  |-  ( 1  e.  CC  ->  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 ) )
7023, 69ax-mp 5 . . . 4  |-  ( cos `  ( 2  x.  1 ) )  =  ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  -  1 )
7168, 70eqtr3i 2188 . . 3  |-  ( cos `  2 )  =  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  -  1 )
7267, 71breqtrri 4009 . 2  |-  -u (
7  /  9 )  <  ( cos `  2
)
7335simpri 112 . . . . . . . . 9  |-  ( cos `  1 )  < 
( 2  /  3
)
74 0le2 8947 . . . . . . . . . . 11  |-  0  <_  2
7557, 40divge0i 8806 . . . . . . . . . . 11  |-  ( ( 0  <_  2  /\  0  <  3 )  -> 
0  <_  ( 2  /  3 ) )
7674, 38, 75mp2an 423 . . . . . . . . . 10  |-  0  <_  ( 2  /  3
)
7757, 40, 29redivclapi 8675 . . . . . . . . . . 11  |-  ( 2  /  3 )  e.  RR
7845, 77lt2sqi 10542 . . . . . . . . . 10  |-  ( ( 0  <_  ( cos `  1 )  /\  0  <_  ( 2  /  3
) )  ->  (
( cos `  1
)  <  ( 2  /  3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) ) )
7949, 76, 78mp2an 423 . . . . . . . . 9  |-  ( ( cos `  1 )  <  ( 2  / 
3 )  <->  ( ( cos `  1 ) ^
2 )  <  (
( 2  /  3
) ^ 2 ) )
8073, 79mpbi 144 . . . . . . . 8  |-  ( ( cos `  1 ) ^ 2 )  < 
( ( 2  / 
3 ) ^ 2 )
818, 28, 29sqdivapi 10538 . . . . . . . . 9  |-  ( ( 2  /  3 ) ^ 2 )  =  ( ( 2 ^ 2 )  /  (
3 ^ 2 ) )
82 sq2 10550 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
8382, 32oveq12i 5854 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  /  ( 3 ^ 2 ) )  =  ( 4  /  9
)
8481, 83eqtri 2186 . . . . . . . 8  |-  ( ( 2  /  3 ) ^ 2 )  =  ( 4  /  9
)
8580, 84breqtri 4007 . . . . . . 7  |-  ( ( cos `  1 ) ^ 2 )  < 
( 4  /  9
)
86 4re 8934 . . . . . . . . . 10  |-  4  e.  RR
8786, 3, 5redivclapi 8675 . . . . . . . . 9  |-  ( 4  /  9 )  e.  RR
8856, 87, 57ltmul2i 8818 . . . . . . . 8  |-  ( 0  <  2  ->  (
( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) ) )
8954, 88ax-mp 5 . . . . . . 7  |-  ( ( ( cos `  1
) ^ 2 )  <  ( 4  / 
9 )  <->  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) ) )
9085, 89mpbi 144 . . . . . 6  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 2  x.  (
4  /  9 ) )
91 4cn 8935 . . . . . . . 8  |-  4  e.  CC
928, 91, 2, 5divassapi 8664 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 2  x.  (
4  /  9 ) )
93 4t2e8 9015 . . . . . . . . 9  |-  ( 4  x.  2 )  =  8
9491, 8, 93mulcomli 7906 . . . . . . . 8  |-  ( 2  x.  4 )  =  8
9594oveq1i 5852 . . . . . . 7  |-  ( ( 2  x.  4 )  /  9 )  =  ( 8  /  9
)
9692, 95eqtr3i 2188 . . . . . 6  |-  ( 2  x.  ( 4  / 
9 ) )  =  ( 8  /  9
)
9790, 96breqtri 4007 . . . . 5  |-  ( 2  x.  ( ( cos `  1 ) ^
2 ) )  < 
( 8  /  9
)
98 8re 8942 . . . . . . 7  |-  8  e.  RR
9998, 3, 5redivclapi 8675 . . . . . 6  |-  ( 8  /  9 )  e.  RR
100 ltsub1 8356 . . . . . 6  |-  ( ( ( 2  x.  (
( cos `  1
) ^ 2 ) )  e.  RR  /\  ( 8  /  9
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( cos `  1
) ^ 2 ) )  <  ( 8  /  9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) ) )
10163, 99, 39, 100mp3an 1327 . . . . 5  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  <  ( 8  / 
9 )  <->  ( (
2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 ) )
10297, 101mpbi 144 . . . 4  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  < 
( ( 8  / 
9 )  -  1 )
10320oveq2i 5853 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  =  ( ( 8  / 
9 )  -  1 )
104 divnegap 8602 . . . . . . 7  |-  ( ( 1  e.  CC  /\  9  e.  CC  /\  9 #  0 )  ->  -u (
1  /  9 )  =  ( -u 1  /  9 ) )
10523, 2, 5, 104mp3an 1327 . . . . . 6  |-  -u (
1  /  9 )  =  ( -u 1  /  9 )
106 8cn 8943 . . . . . . . . 9  |-  8  e.  CC
1072, 106negsubdi2i 8184 . . . . . . . 8  |-  -u (
9  -  8 )  =  ( 8  -  9 )
108 8p1e9 8997 . . . . . . . . . 10  |-  ( 8  +  1 )  =  9
1092, 106, 23, 108subaddrii 8187 . . . . . . . . 9  |-  ( 9  -  8 )  =  1
110109negeqi 8092 . . . . . . . 8  |-  -u (
9  -  8 )  =  -u 1
111107, 110eqtr3i 2188 . . . . . . 7  |-  ( 8  -  9 )  = 
-u 1
112111oveq1i 5852 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( -u 1  / 
9 )
113 divsubdirap 8604 . . . . . . 7  |-  ( ( 8  e.  CC  /\  9  e.  CC  /\  (
9  e.  CC  /\  9 #  0 ) )  -> 
( ( 8  -  9 )  /  9
)  =  ( ( 8  /  9 )  -  ( 9  / 
9 ) ) )
114106, 2, 9, 113mp3an 1327 . . . . . 6  |-  ( ( 8  -  9 )  /  9 )  =  ( ( 8  / 
9 )  -  (
9  /  9 ) )
115105, 112, 1143eqtr2ri 2193 . . . . 5  |-  ( ( 8  /  9 )  -  ( 9  / 
9 ) )  = 
-u ( 1  / 
9 )
116103, 115eqtr3i 2188 . . . 4  |-  ( ( 8  /  9 )  -  1 )  = 
-u ( 1  / 
9 )
117102, 116breqtri 4007 . . 3  |-  ( ( 2  x.  ( ( cos `  1 ) ^ 2 ) )  -  1 )  <  -u ( 1  /  9
)
11871, 117eqbrtri 4003 . 2  |-  ( cos `  2 )  <  -u ( 1  /  9
)
11972, 118pm3.2i 270 1  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   3c3 8909   4c4 8910   7c7 8913   8c8 8914   9c9 8915   ^cexp 10454   cosccos 11586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ioc 9829  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592
This theorem is referenced by:  sincos2sgn  11706
  Copyright terms: Public domain W3C validator