| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos2bnd | Unicode version | ||
| Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos2bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7cn 9140 |
. . . . . 6
| |
| 2 | 9cn 9144 |
. . . . . 6
| |
| 3 | 9re 9143 |
. . . . . . 7
| |
| 4 | 9pos 9160 |
. . . . . . 7
| |
| 5 | 3, 4 | gt0ap0ii 8721 |
. . . . . 6
|
| 6 | divnegap 8799 |
. . . . . 6
| |
| 7 | 1, 2, 5, 6 | mp3an 1350 |
. . . . 5
|
| 8 | 2cn 9127 |
. . . . . . 7
| |
| 9 | 2, 5 | pm3.2i 272 |
. . . . . . 7
|
| 10 | divsubdirap 8801 |
. . . . . . 7
| |
| 11 | 8, 2, 9, 10 | mp3an 1350 |
. . . . . 6
|
| 12 | 2, 8 | negsubdi2i 8378 |
. . . . . . . 8
|
| 13 | 7p2e9 9208 |
. . . . . . . . . 10
| |
| 14 | 2, 8, 1 | subadd2i 8380 |
. . . . . . . . . 10
|
| 15 | 13, 14 | mpbir 146 |
. . . . . . . . 9
|
| 16 | 15 | negeqi 8286 |
. . . . . . . 8
|
| 17 | 12, 16 | eqtr3i 2229 |
. . . . . . 7
|
| 18 | 17 | oveq1i 5967 |
. . . . . 6
|
| 19 | 11, 18 | eqtr3i 2229 |
. . . . 5
|
| 20 | 2, 5 | dividapi 8838 |
. . . . . 6
|
| 21 | 20 | oveq2i 5968 |
. . . . 5
|
| 22 | 7, 19, 21 | 3eqtr2ri 2234 |
. . . 4
|
| 23 | ax-1cn 8038 |
. . . . . . . 8
| |
| 24 | 8, 23, 2, 5 | divassapi 8861 |
. . . . . . 7
|
| 25 | 2t1e2 9210 |
. . . . . . . 8
| |
| 26 | 25 | oveq1i 5967 |
. . . . . . 7
|
| 27 | 24, 26 | eqtr3i 2229 |
. . . . . 6
|
| 28 | 3cn 9131 |
. . . . . . . . . 10
| |
| 29 | 3ap0 9152 |
. . . . . . . . . 10
| |
| 30 | 23, 28, 29 | sqdivapi 10790 |
. . . . . . . . 9
|
| 31 | sq1 10800 |
. . . . . . . . . 10
| |
| 32 | sq3 10803 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | oveq12i 5969 |
. . . . . . . . 9
|
| 34 | 30, 33 | eqtri 2227 |
. . . . . . . 8
|
| 35 | cos1bnd 12145 |
. . . . . . . . . 10
| |
| 36 | 35 | simpli 111 |
. . . . . . . . 9
|
| 37 | 0le1 8574 |
. . . . . . . . . . 11
| |
| 38 | 3pos 9150 |
. . . . . . . . . . 11
| |
| 39 | 1re 8091 |
. . . . . . . . . . . 12
| |
| 40 | 3re 9130 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | divge0i 9004 |
. . . . . . . . . . 11
|
| 42 | 37, 38, 41 | mp2an 426 |
. . . . . . . . . 10
|
| 43 | 0re 8092 |
. . . . . . . . . . 11
| |
| 44 | recoscl 12107 |
. . . . . . . . . . . 12
| |
| 45 | 39, 44 | ax-mp 5 |
. . . . . . . . . . 11
|
| 46 | 40, 29 | rerecclapi 8870 |
. . . . . . . . . . . . 13
|
| 47 | 43, 46, 45 | lelttri 8198 |
. . . . . . . . . . . 12
|
| 48 | 42, 36, 47 | mp2an 426 |
. . . . . . . . . . 11
|
| 49 | 43, 45, 48 | ltleii 8195 |
. . . . . . . . . 10
|
| 50 | 46, 45 | lt2sqi 10794 |
. . . . . . . . . 10
|
| 51 | 42, 49, 50 | mp2an 426 |
. . . . . . . . 9
|
| 52 | 36, 51 | mpbi 145 |
. . . . . . . 8
|
| 53 | 34, 52 | eqbrtrri 4074 |
. . . . . . 7
|
| 54 | 2pos 9147 |
. . . . . . . 8
| |
| 55 | 3, 5 | rerecclapi 8870 |
. . . . . . . . 9
|
| 56 | 45 | resqcli 10791 |
. . . . . . . . 9
|
| 57 | 2re 9126 |
. . . . . . . . 9
| |
| 58 | 55, 56, 57 | ltmul2i 9016 |
. . . . . . . 8
|
| 59 | 54, 58 | ax-mp 5 |
. . . . . . 7
|
| 60 | 53, 59 | mpbi 145 |
. . . . . 6
|
| 61 | 27, 60 | eqbrtrri 4074 |
. . . . 5
|
| 62 | 57, 3, 5 | redivclapi 8872 |
. . . . . 6
|
| 63 | 57, 56 | remulcli 8106 |
. . . . . 6
|
| 64 | ltsub1 8551 |
. . . . . 6
| |
| 65 | 62, 63, 39, 64 | mp3an 1350 |
. . . . 5
|
| 66 | 61, 65 | mpbi 145 |
. . . 4
|
| 67 | 22, 66 | eqbrtrri 4074 |
. . 3
|
| 68 | 25 | fveq2i 5592 |
. . . 4
|
| 69 | cos2t 12136 |
. . . . 5
| |
| 70 | 23, 69 | ax-mp 5 |
. . . 4
|
| 71 | 68, 70 | eqtr3i 2229 |
. . 3
|
| 72 | 67, 71 | breqtrri 4078 |
. 2
|
| 73 | 35 | simpri 113 |
. . . . . . . . 9
|
| 74 | 0le2 9146 |
. . . . . . . . . . 11
| |
| 75 | 57, 40 | divge0i 9004 |
. . . . . . . . . . 11
|
| 76 | 74, 38, 75 | mp2an 426 |
. . . . . . . . . 10
|
| 77 | 57, 40, 29 | redivclapi 8872 |
. . . . . . . . . . 11
|
| 78 | 45, 77 | lt2sqi 10794 |
. . . . . . . . . 10
|
| 79 | 49, 76, 78 | mp2an 426 |
. . . . . . . . 9
|
| 80 | 73, 79 | mpbi 145 |
. . . . . . . 8
|
| 81 | 8, 28, 29 | sqdivapi 10790 |
. . . . . . . . 9
|
| 82 | sq2 10802 |
. . . . . . . . . 10
| |
| 83 | 82, 32 | oveq12i 5969 |
. . . . . . . . 9
|
| 84 | 81, 83 | eqtri 2227 |
. . . . . . . 8
|
| 85 | 80, 84 | breqtri 4076 |
. . . . . . 7
|
| 86 | 4re 9133 |
. . . . . . . . . 10
| |
| 87 | 86, 3, 5 | redivclapi 8872 |
. . . . . . . . 9
|
| 88 | 56, 87, 57 | ltmul2i 9016 |
. . . . . . . 8
|
| 89 | 54, 88 | ax-mp 5 |
. . . . . . 7
|
| 90 | 85, 89 | mpbi 145 |
. . . . . 6
|
| 91 | 4cn 9134 |
. . . . . . . 8
| |
| 92 | 8, 91, 2, 5 | divassapi 8861 |
. . . . . . 7
|
| 93 | 4t2e8 9215 |
. . . . . . . . 9
| |
| 94 | 91, 8, 93 | mulcomli 8099 |
. . . . . . . 8
|
| 95 | 94 | oveq1i 5967 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr3i 2229 |
. . . . . 6
|
| 97 | 90, 96 | breqtri 4076 |
. . . . 5
|
| 98 | 8re 9141 |
. . . . . . 7
| |
| 99 | 98, 3, 5 | redivclapi 8872 |
. . . . . 6
|
| 100 | ltsub1 8551 |
. . . . . 6
| |
| 101 | 63, 99, 39, 100 | mp3an 1350 |
. . . . 5
|
| 102 | 97, 101 | mpbi 145 |
. . . 4
|
| 103 | 20 | oveq2i 5968 |
. . . . 5
|
| 104 | divnegap 8799 |
. . . . . . 7
| |
| 105 | 23, 2, 5, 104 | mp3an 1350 |
. . . . . 6
|
| 106 | 8cn 9142 |
. . . . . . . . 9
| |
| 107 | 2, 106 | negsubdi2i 8378 |
. . . . . . . 8
|
| 108 | 8p1e9 9197 |
. . . . . . . . . 10
| |
| 109 | 2, 106, 23, 108 | subaddrii 8381 |
. . . . . . . . 9
|
| 110 | 109 | negeqi 8286 |
. . . . . . . 8
|
| 111 | 107, 110 | eqtr3i 2229 |
. . . . . . 7
|
| 112 | 111 | oveq1i 5967 |
. . . . . 6
|
| 113 | divsubdirap 8801 |
. . . . . . 7
| |
| 114 | 106, 2, 9, 113 | mp3an 1350 |
. . . . . 6
|
| 115 | 105, 112, 114 | 3eqtr2ri 2234 |
. . . . 5
|
| 116 | 103, 115 | eqtr3i 2229 |
. . . 4
|
| 117 | 102, 116 | breqtri 4076 |
. . 3
|
| 118 | 71, 117 | eqbrtri 4072 |
. 2
|
| 119 | 72, 118 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-disj 4028 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-ioc 10035 df-ico 10036 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-bc 10915 df-ihash 10943 df-shft 11201 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 df-ef 12034 df-sin 12036 df-cos 12037 |
| This theorem is referenced by: sincos2sgn 12152 |
| Copyright terms: Public domain | W3C validator |