| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos2bnd | Unicode version | ||
| Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos2bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7cn 9119 |
. . . . . 6
| |
| 2 | 9cn 9123 |
. . . . . 6
| |
| 3 | 9re 9122 |
. . . . . . 7
| |
| 4 | 9pos 9139 |
. . . . . . 7
| |
| 5 | 3, 4 | gt0ap0ii 8700 |
. . . . . 6
|
| 6 | divnegap 8778 |
. . . . . 6
| |
| 7 | 1, 2, 5, 6 | mp3an 1349 |
. . . . 5
|
| 8 | 2cn 9106 |
. . . . . . 7
| |
| 9 | 2, 5 | pm3.2i 272 |
. . . . . . 7
|
| 10 | divsubdirap 8780 |
. . . . . . 7
| |
| 11 | 8, 2, 9, 10 | mp3an 1349 |
. . . . . 6
|
| 12 | 2, 8 | negsubdi2i 8357 |
. . . . . . . 8
|
| 13 | 7p2e9 9187 |
. . . . . . . . . 10
| |
| 14 | 2, 8, 1 | subadd2i 8359 |
. . . . . . . . . 10
|
| 15 | 13, 14 | mpbir 146 |
. . . . . . . . 9
|
| 16 | 15 | negeqi 8265 |
. . . . . . . 8
|
| 17 | 12, 16 | eqtr3i 2227 |
. . . . . . 7
|
| 18 | 17 | oveq1i 5953 |
. . . . . 6
|
| 19 | 11, 18 | eqtr3i 2227 |
. . . . 5
|
| 20 | 2, 5 | dividapi 8817 |
. . . . . 6
|
| 21 | 20 | oveq2i 5954 |
. . . . 5
|
| 22 | 7, 19, 21 | 3eqtr2ri 2232 |
. . . 4
|
| 23 | ax-1cn 8017 |
. . . . . . . 8
| |
| 24 | 8, 23, 2, 5 | divassapi 8840 |
. . . . . . 7
|
| 25 | 2t1e2 9189 |
. . . . . . . 8
| |
| 26 | 25 | oveq1i 5953 |
. . . . . . 7
|
| 27 | 24, 26 | eqtr3i 2227 |
. . . . . 6
|
| 28 | 3cn 9110 |
. . . . . . . . . 10
| |
| 29 | 3ap0 9131 |
. . . . . . . . . 10
| |
| 30 | 23, 28, 29 | sqdivapi 10766 |
. . . . . . . . 9
|
| 31 | sq1 10776 |
. . . . . . . . . 10
| |
| 32 | sq3 10779 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | oveq12i 5955 |
. . . . . . . . 9
|
| 34 | 30, 33 | eqtri 2225 |
. . . . . . . 8
|
| 35 | cos1bnd 12012 |
. . . . . . . . . 10
| |
| 36 | 35 | simpli 111 |
. . . . . . . . 9
|
| 37 | 0le1 8553 |
. . . . . . . . . . 11
| |
| 38 | 3pos 9129 |
. . . . . . . . . . 11
| |
| 39 | 1re 8070 |
. . . . . . . . . . . 12
| |
| 40 | 3re 9109 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | divge0i 8983 |
. . . . . . . . . . 11
|
| 42 | 37, 38, 41 | mp2an 426 |
. . . . . . . . . 10
|
| 43 | 0re 8071 |
. . . . . . . . . . 11
| |
| 44 | recoscl 11974 |
. . . . . . . . . . . 12
| |
| 45 | 39, 44 | ax-mp 5 |
. . . . . . . . . . 11
|
| 46 | 40, 29 | rerecclapi 8849 |
. . . . . . . . . . . . 13
|
| 47 | 43, 46, 45 | lelttri 8177 |
. . . . . . . . . . . 12
|
| 48 | 42, 36, 47 | mp2an 426 |
. . . . . . . . . . 11
|
| 49 | 43, 45, 48 | ltleii 8174 |
. . . . . . . . . 10
|
| 50 | 46, 45 | lt2sqi 10770 |
. . . . . . . . . 10
|
| 51 | 42, 49, 50 | mp2an 426 |
. . . . . . . . 9
|
| 52 | 36, 51 | mpbi 145 |
. . . . . . . 8
|
| 53 | 34, 52 | eqbrtrri 4066 |
. . . . . . 7
|
| 54 | 2pos 9126 |
. . . . . . . 8
| |
| 55 | 3, 5 | rerecclapi 8849 |
. . . . . . . . 9
|
| 56 | 45 | resqcli 10767 |
. . . . . . . . 9
|
| 57 | 2re 9105 |
. . . . . . . . 9
| |
| 58 | 55, 56, 57 | ltmul2i 8995 |
. . . . . . . 8
|
| 59 | 54, 58 | ax-mp 5 |
. . . . . . 7
|
| 60 | 53, 59 | mpbi 145 |
. . . . . 6
|
| 61 | 27, 60 | eqbrtrri 4066 |
. . . . 5
|
| 62 | 57, 3, 5 | redivclapi 8851 |
. . . . . 6
|
| 63 | 57, 56 | remulcli 8085 |
. . . . . 6
|
| 64 | ltsub1 8530 |
. . . . . 6
| |
| 65 | 62, 63, 39, 64 | mp3an 1349 |
. . . . 5
|
| 66 | 61, 65 | mpbi 145 |
. . . 4
|
| 67 | 22, 66 | eqbrtrri 4066 |
. . 3
|
| 68 | 25 | fveq2i 5578 |
. . . 4
|
| 69 | cos2t 12003 |
. . . . 5
| |
| 70 | 23, 69 | ax-mp 5 |
. . . 4
|
| 71 | 68, 70 | eqtr3i 2227 |
. . 3
|
| 72 | 67, 71 | breqtrri 4070 |
. 2
|
| 73 | 35 | simpri 113 |
. . . . . . . . 9
|
| 74 | 0le2 9125 |
. . . . . . . . . . 11
| |
| 75 | 57, 40 | divge0i 8983 |
. . . . . . . . . . 11
|
| 76 | 74, 38, 75 | mp2an 426 |
. . . . . . . . . 10
|
| 77 | 57, 40, 29 | redivclapi 8851 |
. . . . . . . . . . 11
|
| 78 | 45, 77 | lt2sqi 10770 |
. . . . . . . . . 10
|
| 79 | 49, 76, 78 | mp2an 426 |
. . . . . . . . 9
|
| 80 | 73, 79 | mpbi 145 |
. . . . . . . 8
|
| 81 | 8, 28, 29 | sqdivapi 10766 |
. . . . . . . . 9
|
| 82 | sq2 10778 |
. . . . . . . . . 10
| |
| 83 | 82, 32 | oveq12i 5955 |
. . . . . . . . 9
|
| 84 | 81, 83 | eqtri 2225 |
. . . . . . . 8
|
| 85 | 80, 84 | breqtri 4068 |
. . . . . . 7
|
| 86 | 4re 9112 |
. . . . . . . . . 10
| |
| 87 | 86, 3, 5 | redivclapi 8851 |
. . . . . . . . 9
|
| 88 | 56, 87, 57 | ltmul2i 8995 |
. . . . . . . 8
|
| 89 | 54, 88 | ax-mp 5 |
. . . . . . 7
|
| 90 | 85, 89 | mpbi 145 |
. . . . . 6
|
| 91 | 4cn 9113 |
. . . . . . . 8
| |
| 92 | 8, 91, 2, 5 | divassapi 8840 |
. . . . . . 7
|
| 93 | 4t2e8 9194 |
. . . . . . . . 9
| |
| 94 | 91, 8, 93 | mulcomli 8078 |
. . . . . . . 8
|
| 95 | 94 | oveq1i 5953 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr3i 2227 |
. . . . . 6
|
| 97 | 90, 96 | breqtri 4068 |
. . . . 5
|
| 98 | 8re 9120 |
. . . . . . 7
| |
| 99 | 98, 3, 5 | redivclapi 8851 |
. . . . . 6
|
| 100 | ltsub1 8530 |
. . . . . 6
| |
| 101 | 63, 99, 39, 100 | mp3an 1349 |
. . . . 5
|
| 102 | 97, 101 | mpbi 145 |
. . . 4
|
| 103 | 20 | oveq2i 5954 |
. . . . 5
|
| 104 | divnegap 8778 |
. . . . . . 7
| |
| 105 | 23, 2, 5, 104 | mp3an 1349 |
. . . . . 6
|
| 106 | 8cn 9121 |
. . . . . . . . 9
| |
| 107 | 2, 106 | negsubdi2i 8357 |
. . . . . . . 8
|
| 108 | 8p1e9 9176 |
. . . . . . . . . 10
| |
| 109 | 2, 106, 23, 108 | subaddrii 8360 |
. . . . . . . . 9
|
| 110 | 109 | negeqi 8265 |
. . . . . . . 8
|
| 111 | 107, 110 | eqtr3i 2227 |
. . . . . . 7
|
| 112 | 111 | oveq1i 5953 |
. . . . . 6
|
| 113 | divsubdirap 8780 |
. . . . . . 7
| |
| 114 | 106, 2, 9, 113 | mp3an 1349 |
. . . . . 6
|
| 115 | 105, 112, 114 | 3eqtr2ri 2232 |
. . . . 5
|
| 116 | 103, 115 | eqtr3i 2227 |
. . . 4
|
| 117 | 102, 116 | breqtri 4068 |
. . 3
|
| 118 | 71, 117 | eqbrtri 4064 |
. 2
|
| 119 | 72, 118 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ioc 10014 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11068 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 df-ef 11901 df-sin 11903 df-cos 11904 |
| This theorem is referenced by: sincos2sgn 12019 |
| Copyright terms: Public domain | W3C validator |