| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos2bnd | Unicode version | ||
| Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos2bnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7cn 9190 |
. . . . . 6
| |
| 2 | 9cn 9194 |
. . . . . 6
| |
| 3 | 9re 9193 |
. . . . . . 7
| |
| 4 | 9pos 9210 |
. . . . . . 7
| |
| 5 | 3, 4 | gt0ap0ii 8771 |
. . . . . 6
|
| 6 | divnegap 8849 |
. . . . . 6
| |
| 7 | 1, 2, 5, 6 | mp3an 1371 |
. . . . 5
|
| 8 | 2cn 9177 |
. . . . . . 7
| |
| 9 | 2, 5 | pm3.2i 272 |
. . . . . . 7
|
| 10 | divsubdirap 8851 |
. . . . . . 7
| |
| 11 | 8, 2, 9, 10 | mp3an 1371 |
. . . . . 6
|
| 12 | 2, 8 | negsubdi2i 8428 |
. . . . . . . 8
|
| 13 | 7p2e9 9258 |
. . . . . . . . . 10
| |
| 14 | 2, 8, 1 | subadd2i 8430 |
. . . . . . . . . 10
|
| 15 | 13, 14 | mpbir 146 |
. . . . . . . . 9
|
| 16 | 15 | negeqi 8336 |
. . . . . . . 8
|
| 17 | 12, 16 | eqtr3i 2252 |
. . . . . . 7
|
| 18 | 17 | oveq1i 6010 |
. . . . . 6
|
| 19 | 11, 18 | eqtr3i 2252 |
. . . . 5
|
| 20 | 2, 5 | dividapi 8888 |
. . . . . 6
|
| 21 | 20 | oveq2i 6011 |
. . . . 5
|
| 22 | 7, 19, 21 | 3eqtr2ri 2257 |
. . . 4
|
| 23 | ax-1cn 8088 |
. . . . . . . 8
| |
| 24 | 8, 23, 2, 5 | divassapi 8911 |
. . . . . . 7
|
| 25 | 2t1e2 9260 |
. . . . . . . 8
| |
| 26 | 25 | oveq1i 6010 |
. . . . . . 7
|
| 27 | 24, 26 | eqtr3i 2252 |
. . . . . 6
|
| 28 | 3cn 9181 |
. . . . . . . . . 10
| |
| 29 | 3ap0 9202 |
. . . . . . . . . 10
| |
| 30 | 23, 28, 29 | sqdivapi 10840 |
. . . . . . . . 9
|
| 31 | sq1 10850 |
. . . . . . . . . 10
| |
| 32 | sq3 10853 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | oveq12i 6012 |
. . . . . . . . 9
|
| 34 | 30, 33 | eqtri 2250 |
. . . . . . . 8
|
| 35 | cos1bnd 12265 |
. . . . . . . . . 10
| |
| 36 | 35 | simpli 111 |
. . . . . . . . 9
|
| 37 | 0le1 8624 |
. . . . . . . . . . 11
| |
| 38 | 3pos 9200 |
. . . . . . . . . . 11
| |
| 39 | 1re 8141 |
. . . . . . . . . . . 12
| |
| 40 | 3re 9180 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | divge0i 9054 |
. . . . . . . . . . 11
|
| 42 | 37, 38, 41 | mp2an 426 |
. . . . . . . . . 10
|
| 43 | 0re 8142 |
. . . . . . . . . . 11
| |
| 44 | recoscl 12227 |
. . . . . . . . . . . 12
| |
| 45 | 39, 44 | ax-mp 5 |
. . . . . . . . . . 11
|
| 46 | 40, 29 | rerecclapi 8920 |
. . . . . . . . . . . . 13
|
| 47 | 43, 46, 45 | lelttri 8248 |
. . . . . . . . . . . 12
|
| 48 | 42, 36, 47 | mp2an 426 |
. . . . . . . . . . 11
|
| 49 | 43, 45, 48 | ltleii 8245 |
. . . . . . . . . 10
|
| 50 | 46, 45 | lt2sqi 10844 |
. . . . . . . . . 10
|
| 51 | 42, 49, 50 | mp2an 426 |
. . . . . . . . 9
|
| 52 | 36, 51 | mpbi 145 |
. . . . . . . 8
|
| 53 | 34, 52 | eqbrtrri 4105 |
. . . . . . 7
|
| 54 | 2pos 9197 |
. . . . . . . 8
| |
| 55 | 3, 5 | rerecclapi 8920 |
. . . . . . . . 9
|
| 56 | 45 | resqcli 10841 |
. . . . . . . . 9
|
| 57 | 2re 9176 |
. . . . . . . . 9
| |
| 58 | 55, 56, 57 | ltmul2i 9066 |
. . . . . . . 8
|
| 59 | 54, 58 | ax-mp 5 |
. . . . . . 7
|
| 60 | 53, 59 | mpbi 145 |
. . . . . 6
|
| 61 | 27, 60 | eqbrtrri 4105 |
. . . . 5
|
| 62 | 57, 3, 5 | redivclapi 8922 |
. . . . . 6
|
| 63 | 57, 56 | remulcli 8156 |
. . . . . 6
|
| 64 | ltsub1 8601 |
. . . . . 6
| |
| 65 | 62, 63, 39, 64 | mp3an 1371 |
. . . . 5
|
| 66 | 61, 65 | mpbi 145 |
. . . 4
|
| 67 | 22, 66 | eqbrtrri 4105 |
. . 3
|
| 68 | 25 | fveq2i 5629 |
. . . 4
|
| 69 | cos2t 12256 |
. . . . 5
| |
| 70 | 23, 69 | ax-mp 5 |
. . . 4
|
| 71 | 68, 70 | eqtr3i 2252 |
. . 3
|
| 72 | 67, 71 | breqtrri 4109 |
. 2
|
| 73 | 35 | simpri 113 |
. . . . . . . . 9
|
| 74 | 0le2 9196 |
. . . . . . . . . . 11
| |
| 75 | 57, 40 | divge0i 9054 |
. . . . . . . . . . 11
|
| 76 | 74, 38, 75 | mp2an 426 |
. . . . . . . . . 10
|
| 77 | 57, 40, 29 | redivclapi 8922 |
. . . . . . . . . . 11
|
| 78 | 45, 77 | lt2sqi 10844 |
. . . . . . . . . 10
|
| 79 | 49, 76, 78 | mp2an 426 |
. . . . . . . . 9
|
| 80 | 73, 79 | mpbi 145 |
. . . . . . . 8
|
| 81 | 8, 28, 29 | sqdivapi 10840 |
. . . . . . . . 9
|
| 82 | sq2 10852 |
. . . . . . . . . 10
| |
| 83 | 82, 32 | oveq12i 6012 |
. . . . . . . . 9
|
| 84 | 81, 83 | eqtri 2250 |
. . . . . . . 8
|
| 85 | 80, 84 | breqtri 4107 |
. . . . . . 7
|
| 86 | 4re 9183 |
. . . . . . . . . 10
| |
| 87 | 86, 3, 5 | redivclapi 8922 |
. . . . . . . . 9
|
| 88 | 56, 87, 57 | ltmul2i 9066 |
. . . . . . . 8
|
| 89 | 54, 88 | ax-mp 5 |
. . . . . . 7
|
| 90 | 85, 89 | mpbi 145 |
. . . . . 6
|
| 91 | 4cn 9184 |
. . . . . . . 8
| |
| 92 | 8, 91, 2, 5 | divassapi 8911 |
. . . . . . 7
|
| 93 | 4t2e8 9265 |
. . . . . . . . 9
| |
| 94 | 91, 8, 93 | mulcomli 8149 |
. . . . . . . 8
|
| 95 | 94 | oveq1i 6010 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr3i 2252 |
. . . . . 6
|
| 97 | 90, 96 | breqtri 4107 |
. . . . 5
|
| 98 | 8re 9191 |
. . . . . . 7
| |
| 99 | 98, 3, 5 | redivclapi 8922 |
. . . . . 6
|
| 100 | ltsub1 8601 |
. . . . . 6
| |
| 101 | 63, 99, 39, 100 | mp3an 1371 |
. . . . 5
|
| 102 | 97, 101 | mpbi 145 |
. . . 4
|
| 103 | 20 | oveq2i 6011 |
. . . . 5
|
| 104 | divnegap 8849 |
. . . . . . 7
| |
| 105 | 23, 2, 5, 104 | mp3an 1371 |
. . . . . 6
|
| 106 | 8cn 9192 |
. . . . . . . . 9
| |
| 107 | 2, 106 | negsubdi2i 8428 |
. . . . . . . 8
|
| 108 | 8p1e9 9247 |
. . . . . . . . . 10
| |
| 109 | 2, 106, 23, 108 | subaddrii 8431 |
. . . . . . . . 9
|
| 110 | 109 | negeqi 8336 |
. . . . . . . 8
|
| 111 | 107, 110 | eqtr3i 2252 |
. . . . . . 7
|
| 112 | 111 | oveq1i 6010 |
. . . . . 6
|
| 113 | divsubdirap 8851 |
. . . . . . 7
| |
| 114 | 106, 2, 9, 113 | mp3an 1371 |
. . . . . 6
|
| 115 | 105, 112, 114 | 3eqtr2ri 2257 |
. . . . 5
|
| 116 | 103, 115 | eqtr3i 2252 |
. . . 4
|
| 117 | 102, 116 | breqtri 4107 |
. . 3
|
| 118 | 71, 117 | eqbrtri 4103 |
. 2
|
| 119 | 72, 118 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-ioc 10085 df-ico 10086 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-sin 12156 df-cos 12157 |
| This theorem is referenced by: sincos2sgn 12272 |
| Copyright terms: Public domain | W3C validator |