ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimacnv Unicode version

Theorem funimacnv 5330
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 4672 . . 3  |-  ( F
" ( `' F " A ) )  =  ran  ( F  |`  ( `' F " A ) )
2 funcnvres2 5329 . . . 4  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
32rneqd 4891 . . 3  |-  ( Fun 
F  ->  ran  `' ( `' F  |`  A )  =  ran  ( F  |`  ( `' F " A ) ) )
41, 3eqtr4id 2245 . 2  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ran  `' ( `' F  |`  A )
)
5 df-rn 4670 . . . 4  |-  ran  F  =  dom  `' F
65ineq2i 3357 . . 3  |-  ( A  i^i  ran  F )  =  ( A  i^i  dom  `' F )
7 dmres 4963 . . 3  |-  dom  ( `' F  |`  A )  =  ( A  i^i  dom  `' F )
8 dfdm4 4854 . . 3  |-  dom  ( `' F  |`  A )  =  ran  `' ( `' F  |`  A )
96, 7, 83eqtr2ri 2221 . 2  |-  ran  `' ( `' F  |`  A )  =  ( A  i^i  ran 
F )
104, 9eqtrdi 2242 1  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3152   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  funimass1  5331  funimass2  5332
  Copyright terms: Public domain W3C validator