ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimacnv Unicode version

Theorem funimacnv 5397
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 4732 . . 3  |-  ( F
" ( `' F " A ) )  =  ran  ( F  |`  ( `' F " A ) )
2 funcnvres2 5396 . . . 4  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
32rneqd 4953 . . 3  |-  ( Fun 
F  ->  ran  `' ( `' F  |`  A )  =  ran  ( F  |`  ( `' F " A ) ) )
41, 3eqtr4id 2281 . 2  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ran  `' ( `' F  |`  A )
)
5 df-rn 4730 . . . 4  |-  ran  F  =  dom  `' F
65ineq2i 3402 . . 3  |-  ( A  i^i  ran  F )  =  ( A  i^i  dom  `' F )
7 dmres 5026 . . 3  |-  dom  ( `' F  |`  A )  =  ( A  i^i  dom  `' F )
8 dfdm4 4915 . . 3  |-  dom  ( `' F  |`  A )  =  ran  `' ( `' F  |`  A )
96, 7, 83eqtr2ri 2257 . 2  |-  ran  `' ( `' F  |`  A )  =  ( A  i^i  ran 
F )
104, 9eqtrdi 2278 1  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320
This theorem is referenced by:  funimass1  5398  funimass2  5399
  Copyright terms: Public domain W3C validator