ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimacnv Unicode version

Theorem funimacnv 5307
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 4654 . . 3  |-  ( F
" ( `' F " A ) )  =  ran  ( F  |`  ( `' F " A ) )
2 funcnvres2 5306 . . . 4  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
32rneqd 4871 . . 3  |-  ( Fun 
F  ->  ran  `' ( `' F  |`  A )  =  ran  ( F  |`  ( `' F " A ) ) )
41, 3eqtr4id 2241 . 2  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ran  `' ( `' F  |`  A )
)
5 df-rn 4652 . . . 4  |-  ran  F  =  dom  `' F
65ineq2i 3348 . . 3  |-  ( A  i^i  ran  F )  =  ( A  i^i  dom  `' F )
7 dmres 4943 . . 3  |-  dom  ( `' F  |`  A )  =  ( A  i^i  dom  `' F )
8 dfdm4 4834 . . 3  |-  dom  ( `' F  |`  A )  =  ran  `' ( `' F  |`  A )
96, 7, 83eqtr2ri 2217 . 2  |-  ran  `' ( `' F  |`  A )  =  ( A  i^i  ran 
F )
104, 9eqtrdi 2238 1  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3143   `'ccnv 4640   dom cdm 4641   ran crn 4642    |` cres 4643   "cima 4644   Fun wfun 5225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-fun 5233
This theorem is referenced by:  funimass1  5308  funimass2  5309
  Copyright terms: Public domain W3C validator