| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 |
|
| eqtr2i.2 |
|
| Ref | Expression |
|---|---|
| eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 |
. . 3
| |
| 2 | eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2250 |
. 2
|
| 4 | 3 | eqcomi 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtrri 2255 3eqtr2ri 2257 symdif1 3469 dfif3 3616 dfsn2 3680 prprc1 3775 ruv 4642 xpindi 4857 xpindir 4858 dmcnvcnv 4948 rncnvcnv 4949 imainrect 5174 dfrn4 5189 fcoi1 5506 foimacnv 5590 fsnunfv 5840 dfoprab3 6337 fiintim 7093 sbthlemi8 7131 pitonnlem1 8032 ixi 8730 recexaplem2 8799 zeo 9552 num0h 9589 dec10p 9620 fseq1p1m1 10290 cats1fvn 11296 fsumrelem 11982 ef0lem 12171 ef01bndlem 12267 3lcm2e6woprm 12608 strsl0 13081 0g0 13409 tgioo 15228 tgqioo 15229 dveflem 15400 sincos4thpi 15514 coskpi 15522 |
| Copyright terms: Public domain | W3C validator |