![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 |
![]() ![]() ![]() ![]() |
eqtr2i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2109 |
. 2
![]() ![]() ![]() ![]() |
4 | 3 | eqcomi 2093 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: 3eqtrri 2114 3eqtr2ri 2116 symdif1 3265 dfif3 3410 dfsn2 3464 prprc1 3554 ruv 4379 xpindi 4584 xpindir 4585 dmcnvcnv 4672 rncnvcnv 4673 imainrect 4889 dfrn4 4904 fcoi1 5204 foimacnv 5284 fsnunfv 5512 dfoprab3 5975 fiintim 6693 sbthlemi8 6727 pitonnlem1 7436 ixi 8114 recexaplem2 8175 zeo 8905 num0h 8942 dec10p 8973 fseq1p1m1 9562 fsumrelem 10919 ef0lem 11004 ef01bndlem 11101 3lcm2e6woprm 11400 strsl0 11596 |
Copyright terms: Public domain | W3C validator |