| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 |
|
| eqtr2i.2 |
|
| Ref | Expression |
|---|---|
| eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 |
. . 3
| |
| 2 | eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2228 |
. 2
|
| 4 | 3 | eqcomi 2211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: 3eqtrri 2233 3eqtr2ri 2235 symdif1 3446 dfif3 3593 dfsn2 3657 prprc1 3751 ruv 4616 xpindi 4831 xpindir 4832 dmcnvcnv 4921 rncnvcnv 4922 imainrect 5147 dfrn4 5162 fcoi1 5478 foimacnv 5562 fsnunfv 5808 dfoprab3 6300 fiintim 7054 sbthlemi8 7092 pitonnlem1 7993 ixi 8691 recexaplem2 8760 zeo 9513 num0h 9550 dec10p 9581 fseq1p1m1 10251 fsumrelem 11897 ef0lem 12086 ef01bndlem 12182 3lcm2e6woprm 12523 strsl0 12996 0g0 13323 tgioo 15141 tgqioo 15142 dveflem 15313 sincos4thpi 15427 coskpi 15435 |
| Copyright terms: Public domain | W3C validator |