| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 |
|
| eqtr2i.2 |
|
| Ref | Expression |
|---|---|
| eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 |
. . 3
| |
| 2 | eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2226 |
. 2
|
| 4 | 3 | eqcomi 2209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtrri 2231 3eqtr2ri 2233 symdif1 3438 dfif3 3584 dfsn2 3647 prprc1 3741 ruv 4599 xpindi 4814 xpindir 4815 dmcnvcnv 4903 rncnvcnv 4904 imainrect 5129 dfrn4 5144 fcoi1 5458 foimacnv 5542 fsnunfv 5787 dfoprab3 6279 fiintim 7030 sbthlemi8 7068 pitonnlem1 7960 ixi 8658 recexaplem2 8727 zeo 9480 num0h 9517 dec10p 9548 fseq1p1m1 10218 fsumrelem 11815 ef0lem 12004 ef01bndlem 12100 3lcm2e6woprm 12441 strsl0 12914 0g0 13241 tgioo 15059 tgqioo 15060 dveflem 15231 sincos4thpi 15345 coskpi 15353 |
| Copyright terms: Public domain | W3C validator |