| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
| Ref | Expression |
|---|---|
| eqtr2i.1 |
|
| eqtr2i.2 |
|
| Ref | Expression |
|---|---|
| eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2i.1 |
. . 3
| |
| 2 | eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtri 2226 |
. 2
|
| 4 | 3 | eqcomi 2209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtrri 2231 3eqtr2ri 2233 symdif1 3438 dfif3 3584 dfsn2 3647 prprc1 3741 ruv 4598 xpindi 4813 xpindir 4814 dmcnvcnv 4902 rncnvcnv 4903 imainrect 5128 dfrn4 5143 fcoi1 5456 foimacnv 5540 fsnunfv 5785 dfoprab3 6277 fiintim 7028 sbthlemi8 7066 pitonnlem1 7958 ixi 8656 recexaplem2 8725 zeo 9478 num0h 9515 dec10p 9546 fseq1p1m1 10216 fsumrelem 11782 ef0lem 11971 ef01bndlem 12067 3lcm2e6woprm 12408 strsl0 12881 0g0 13208 tgioo 15026 tgqioo 15027 dveflem 15198 sincos4thpi 15312 coskpi 15320 |
| Copyright terms: Public domain | W3C validator |