ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs Unicode version

Theorem uniqs 6680
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )

Proof of Theorem uniqs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6624 . . . . 5  |-  ( R  e.  V  ->  [ x ] R  e.  _V )
21ralrimivw 2580 . . . 4  |-  ( R  e.  V  ->  A. x  e.  A  [ x ] R  e.  _V )
3 dfiun2g 3959 . . . 4  |-  ( A. x  e.  A  [
x ] R  e. 
_V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
42, 3syl 14 . . 3  |-  ( R  e.  V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
54eqcomd 2211 . 2  |-  ( R  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  [ x ] R }  =  U_ x  e.  A  [ x ] R )
6 df-qs 6626 . . 3  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
76unieqi 3860 . 2  |-  U. ( A /. R )  = 
U. { y  |  E. x  e.  A  y  =  [ x ] R }
8 df-ec 6622 . . . . 5  |-  [ x ] R  =  ( R " { x }
)
98a1i 9 . . . 4  |-  ( x  e.  A  ->  [ x ] R  =  ( R " { x }
) )
109iuneq2i 3945 . . 3  |-  U_ x  e.  A  [ x ] R  =  U_ x  e.  A  ( R " { x }
)
11 imaiun 5829 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  U_ x  e.  A  ( R " { x } )
12 iunid 3983 . . . 4  |-  U_ x  e.  A  { x }  =  A
1312imaeq2i 5020 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  ( R " A )
1410, 11, 133eqtr2ri 2233 . 2  |-  ( R
" A )  = 
U_ x  e.  A  [ x ] R
155, 7, 143eqtr4g 2263 1  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772   {csn 3633   U.cuni 3850   U_ciun 3927   "cima 4678   [cec 6618   /.cqs 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-ec 6622  df-qs 6626
This theorem is referenced by:  uniqs2  6682  ecqs  6684
  Copyright terms: Public domain W3C validator