ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs Unicode version

Theorem uniqs 6550
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )

Proof of Theorem uniqs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6496 . . . . 5  |-  ( R  e.  V  ->  [ x ] R  e.  _V )
21ralrimivw 2538 . . . 4  |-  ( R  e.  V  ->  A. x  e.  A  [ x ] R  e.  _V )
3 dfiun2g 3892 . . . 4  |-  ( A. x  e.  A  [
x ] R  e. 
_V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
42, 3syl 14 . . 3  |-  ( R  e.  V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
54eqcomd 2170 . 2  |-  ( R  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  [ x ] R }  =  U_ x  e.  A  [ x ] R )
6 df-qs 6498 . . 3  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
76unieqi 3793 . 2  |-  U. ( A /. R )  = 
U. { y  |  E. x  e.  A  y  =  [ x ] R }
8 df-ec 6494 . . . . 5  |-  [ x ] R  =  ( R " { x }
)
98a1i 9 . . . 4  |-  ( x  e.  A  ->  [ x ] R  =  ( R " { x }
) )
109iuneq2i 3878 . . 3  |-  U_ x  e.  A  [ x ] R  =  U_ x  e.  A  ( R " { x }
)
11 imaiun 5722 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  U_ x  e.  A  ( R " { x } )
12 iunid 3915 . . . 4  |-  U_ x  e.  A  { x }  =  A
1312imaeq2i 4938 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  ( R " A )
1410, 11, 133eqtr2ri 2192 . 2  |-  ( R
" A )  = 
U_ x  e.  A  [ x ] R
155, 7, 143eqtr4g 2222 1  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   E.wrex 2443   _Vcvv 2721   {csn 3570   U.cuni 3783   U_ciun 3860   "cima 4601   [cec 6490   /.cqs 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-xp 4604  df-cnv 4606  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-ec 6494  df-qs 6498
This theorem is referenced by:  uniqs2  6552  ecqs  6554
  Copyright terms: Public domain W3C validator