| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 |
|
| eqtr4i.2 |
|
| Ref | Expression |
|---|---|
| eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 |
. 2
| |
| 2 | eqtr4i.2 |
. . 3
| |
| 3 | 2 | eqcomi 2233 |
. 2
|
| 4 | 1, 3 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr2i 2256 3eqtr2ri 2257 3eqtr4i 2260 3eqtr4ri 2261 rabab 2821 cbvralcsf 3187 cbvrexcsf 3188 cbvrabcsf 3190 dfin5 3204 dfdif2 3205 uneqin 3455 unrab 3475 inrab 3476 inrab2 3477 difrab 3478 dfrab3ss 3482 rabun2 3483 difidALT 3561 difdifdirss 3576 dfif3 3616 tpidm 3768 dfint2 3925 iunrab 4013 uniiun 4019 intiin 4020 0iin 4024 mptv 4181 xpundi 4775 xpundir 4776 resiun2 5025 resopab 5049 mptresid 5059 dfse2 5101 cnvun 5134 cnvin 5136 imaundir 5142 imainrect 5174 cnvcnv2 5182 cnvcnvres 5192 dmtpop 5204 rnsnopg 5207 rnco2 5236 dmco 5237 co01 5243 unidmrn 5261 dfdm2 5263 funimaexg 5405 dfmpt3 5446 mptun 5455 funcocnv2 5597 fnasrn 5813 fnasrng 5815 fpr 5821 fmptap 5829 riotav 5960 dmoprab 6085 rnoprab2 6088 mpov 6094 mpomptx 6095 abrexex2g 6265 abrexex2 6269 1stval2 6301 2ndval2 6302 fo1st 6303 fo2nd 6304 xp2 6319 dfoprab4f 6339 fmpoco 6362 tposmpo 6427 recsfval 6461 frecfnom 6547 freccllem 6548 frecfcllem 6550 frecsuclem 6552 df2o3 6576 o1p1e2 6614 ecqs 6744 qliftf 6767 erovlem 6774 mapsnf1o3 6844 ixp0x 6873 xpf1o 7005 djuunr 7233 dmaddpq 7566 dmmulpq 7567 enq0enq 7618 nqprlu 7734 m1p1sr 7947 m1m1sr 7948 caucvgsr 7989 dfcnqs 8028 3m1e2 9230 2p2e4 9237 3p2e5 9252 3p3e6 9253 4p2e6 9254 4p3e7 9255 4p4e8 9256 5p2e7 9257 5p3e8 9258 5p4e9 9259 6p2e8 9260 6p3e9 9261 7p2e9 9262 nn0supp 9421 nnzrab 9470 nn0zrab 9471 dec0u 9598 dec0h 9599 decsuc 9608 decsucc 9618 numma 9621 decma 9628 decmac 9629 decma2c 9630 decadd 9631 decaddc 9632 decmul1 9641 decmul1c 9642 decmul2c 9643 5p5e10 9648 6p4e10 9649 7p3e10 9652 8p2e10 9657 5t5e25 9680 6t6e36 9685 8t6e48 9696 nn0uz 9757 nnuz 9758 xaddcom 10057 ioomax 10144 iccmax 10145 ioopos 10146 ioorp 10147 fseq1p1m1 10290 fzo0to2pr 10424 fzo0to3tp 10425 frecfzennn 10648 irec 10861 sq10e99m1 10935 facnn 10949 fac0 10950 faclbnd2 10964 zfz1isolemsplit 11060 minmax 11741 xrminmax 11776 fisumrev2 11957 fsumparts 11981 fsumiun 11988 isumnn0nn 12004 fprod2d 12134 fprodle 12151 ege2le3 12182 cos1bnd 12270 efieq1re 12283 eirraplem 12288 3dvds 12375 m1bits 12471 phiprmpw 12744 4sqlem11 12924 4sqlem19 12932 dec5dvds 12935 decsplit1 12951 unennn 12968 ennnfonelemjn 12973 qnnen 13002 strle1g 13139 quslem 13357 rmodislmod 14315 tgrest 14843 uniretop 15199 cnfldtopn 15213 dvexp 15385 dvef 15401 elply2 15409 cospi 15474 sincos6thpi 15516 lgsdir2lem2 15708 lgsquadlem2 15757 lgsquad2lem2 15761 2lgsoddprmlem3c 15788 bj-omind 16297 |
| Copyright terms: Public domain | W3C validator |