![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 |
![]() ![]() ![]() ![]() |
eqtr4i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqtr4i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2181 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtri 2198 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: 3eqtr2i 2204 3eqtr2ri 2205 3eqtr4i 2208 3eqtr4ri 2209 rabab 2759 cbvralcsf 3120 cbvrexcsf 3121 cbvrabcsf 3123 dfin5 3137 dfdif2 3138 uneqin 3387 unrab 3407 inrab 3408 inrab2 3409 difrab 3410 dfrab3ss 3414 rabun2 3415 difidALT 3493 difdifdirss 3508 dfif3 3548 tpidm 3695 dfint2 3847 iunrab 3935 uniiun 3941 intiin 3942 0iin 3946 mptv 4101 xpundi 4683 xpundir 4684 resiun2 4928 resopab 4952 opabresid 4961 dfse2 5002 cnvun 5035 cnvin 5037 imaundir 5043 imainrect 5075 cnvcnv2 5083 cnvcnvres 5093 dmtpop 5105 rnsnopg 5108 rnco2 5137 dmco 5138 co01 5144 unidmrn 5162 dfdm2 5164 funimaexg 5301 dfmpt3 5339 mptun 5348 funcocnv2 5487 fnasrn 5695 fnasrng 5697 fpr 5699 fmptap 5707 riotav 5836 dmoprab 5956 rnoprab2 5959 mpov 5965 mpomptx 5966 abrexex2g 6121 abrexex2 6125 1stval2 6156 2ndval2 6157 fo1st 6158 fo2nd 6159 xp2 6174 dfoprab4f 6194 fmpoco 6217 tposmpo 6282 recsfval 6316 frecfnom 6402 freccllem 6403 frecfcllem 6405 frecsuclem 6407 df2o3 6431 o1p1e2 6469 ecqs 6597 qliftf 6620 erovlem 6627 mapsnf1o3 6697 ixp0x 6726 xpf1o 6844 djuunr 7065 dmaddpq 7378 dmmulpq 7379 enq0enq 7430 nqprlu 7546 m1p1sr 7759 m1m1sr 7760 caucvgsr 7801 dfcnqs 7840 3m1e2 9039 2p2e4 9046 3p2e5 9060 3p3e6 9061 4p2e6 9062 4p3e7 9063 4p4e8 9064 5p2e7 9065 5p3e8 9066 5p4e9 9067 6p2e8 9068 6p3e9 9069 7p2e9 9070 nn0supp 9228 nnzrab 9277 nn0zrab 9278 dec0u 9404 dec0h 9405 decsuc 9414 decsucc 9424 numma 9427 decma 9434 decmac 9435 decma2c 9436 decadd 9437 decaddc 9438 decmul1 9447 decmul1c 9448 decmul2c 9449 5p5e10 9454 6p4e10 9455 7p3e10 9458 8p2e10 9463 5t5e25 9486 6t6e36 9491 8t6e48 9502 nn0uz 9562 nnuz 9563 xaddcom 9861 ioomax 9948 iccmax 9949 ioopos 9950 ioorp 9951 fseq1p1m1 10094 fzo0to2pr 10218 fzo0to3tp 10219 frecfzennn 10426 irec 10620 sq10e99m1 10693 facnn 10707 fac0 10708 faclbnd2 10722 zfz1isolemsplit 10818 minmax 11238 xrminmax 11273 fisumrev2 11454 fsumparts 11478 fsumiun 11485 isumnn0nn 11501 fprod2d 11631 fprodle 11648 ege2le3 11679 cos1bnd 11767 efieq1re 11779 eirraplem 11784 phiprmpw 12222 unennn 12398 ennnfonelemjn 12403 qnnen 12432 strle1g 12565 quslem 12745 rmodislmod 13441 tgrest 13672 uniretop 14028 dvexp 14178 dvef 14191 cospi 14224 sincos6thpi 14266 lgsdir2lem2 14433 2lgsoddprmlem3c 14460 bj-omind 14689 |
Copyright terms: Public domain | W3C validator |