| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 |
|
| eqtr4i.2 |
|
| Ref | Expression |
|---|---|
| eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 |
. 2
| |
| 2 | eqtr4i.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr2i 2232 3eqtr2ri 2233 3eqtr4i 2236 3eqtr4ri 2237 rabab 2793 cbvralcsf 3156 cbvrexcsf 3157 cbvrabcsf 3159 dfin5 3173 dfdif2 3174 uneqin 3424 unrab 3444 inrab 3445 inrab2 3446 difrab 3447 dfrab3ss 3451 rabun2 3452 difidALT 3530 difdifdirss 3545 dfif3 3584 tpidm 3735 dfint2 3887 iunrab 3975 uniiun 3981 intiin 3982 0iin 3986 mptv 4142 xpundi 4732 xpundir 4733 resiun2 4980 resopab 5004 mptresid 5014 dfse2 5056 cnvun 5089 cnvin 5091 imaundir 5097 imainrect 5129 cnvcnv2 5137 cnvcnvres 5147 dmtpop 5159 rnsnopg 5162 rnco2 5191 dmco 5192 co01 5198 unidmrn 5216 dfdm2 5218 funimaexg 5359 dfmpt3 5400 mptun 5409 funcocnv2 5549 fnasrn 5760 fnasrng 5762 fpr 5768 fmptap 5776 riotav 5907 dmoprab 6028 rnoprab2 6031 mpov 6037 mpomptx 6038 abrexex2g 6207 abrexex2 6211 1stval2 6243 2ndval2 6244 fo1st 6245 fo2nd 6246 xp2 6261 dfoprab4f 6281 fmpoco 6304 tposmpo 6369 recsfval 6403 frecfnom 6489 freccllem 6490 frecfcllem 6492 frecsuclem 6494 df2o3 6518 o1p1e2 6556 ecqs 6686 qliftf 6709 erovlem 6716 mapsnf1o3 6786 ixp0x 6815 xpf1o 6943 djuunr 7170 dmaddpq 7494 dmmulpq 7495 enq0enq 7546 nqprlu 7662 m1p1sr 7875 m1m1sr 7876 caucvgsr 7917 dfcnqs 7956 3m1e2 9158 2p2e4 9165 3p2e5 9180 3p3e6 9181 4p2e6 9182 4p3e7 9183 4p4e8 9184 5p2e7 9185 5p3e8 9186 5p4e9 9187 6p2e8 9188 6p3e9 9189 7p2e9 9190 nn0supp 9349 nnzrab 9398 nn0zrab 9399 dec0u 9526 dec0h 9527 decsuc 9536 decsucc 9546 numma 9549 decma 9556 decmac 9557 decma2c 9558 decadd 9559 decaddc 9560 decmul1 9569 decmul1c 9570 decmul2c 9571 5p5e10 9576 6p4e10 9577 7p3e10 9580 8p2e10 9585 5t5e25 9608 6t6e36 9613 8t6e48 9624 nn0uz 9685 nnuz 9686 xaddcom 9985 ioomax 10072 iccmax 10073 ioopos 10074 ioorp 10075 fseq1p1m1 10218 fzo0to2pr 10349 fzo0to3tp 10350 frecfzennn 10573 irec 10786 sq10e99m1 10860 facnn 10874 fac0 10875 faclbnd2 10889 zfz1isolemsplit 10985 minmax 11574 xrminmax 11609 fisumrev2 11790 fsumparts 11814 fsumiun 11821 isumnn0nn 11837 fprod2d 11967 fprodle 11984 ege2le3 12015 cos1bnd 12103 efieq1re 12116 eirraplem 12121 3dvds 12208 m1bits 12304 phiprmpw 12577 4sqlem11 12757 4sqlem19 12765 dec5dvds 12768 decsplit1 12784 unennn 12801 ennnfonelemjn 12806 qnnen 12835 strle1g 12971 quslem 13189 rmodislmod 14146 tgrest 14674 uniretop 15030 cnfldtopn 15044 dvexp 15216 dvef 15232 elply2 15240 cospi 15305 sincos6thpi 15347 lgsdir2lem2 15539 lgsquadlem2 15588 lgsquad2lem2 15592 2lgsoddprmlem3c 15619 bj-omind 15907 |
| Copyright terms: Public domain | W3C validator |