| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 |
|
| eqtr4i.2 |
|
| Ref | Expression |
|---|---|
| eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 |
. 2
| |
| 2 | eqtr4i.2 |
. . 3
| |
| 3 | 2 | eqcomi 2211 |
. 2
|
| 4 | 1, 3 | eqtri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: 3eqtr2i 2234 3eqtr2ri 2235 3eqtr4i 2238 3eqtr4ri 2239 rabab 2798 cbvralcsf 3164 cbvrexcsf 3165 cbvrabcsf 3167 dfin5 3181 dfdif2 3182 uneqin 3432 unrab 3452 inrab 3453 inrab2 3454 difrab 3455 dfrab3ss 3459 rabun2 3460 difidALT 3538 difdifdirss 3553 dfif3 3593 tpidm 3745 dfint2 3901 iunrab 3989 uniiun 3995 intiin 3996 0iin 4000 mptv 4157 xpundi 4749 xpundir 4750 resiun2 4998 resopab 5022 mptresid 5032 dfse2 5074 cnvun 5107 cnvin 5109 imaundir 5115 imainrect 5147 cnvcnv2 5155 cnvcnvres 5165 dmtpop 5177 rnsnopg 5180 rnco2 5209 dmco 5210 co01 5216 unidmrn 5234 dfdm2 5236 funimaexg 5377 dfmpt3 5418 mptun 5427 funcocnv2 5569 fnasrn 5781 fnasrng 5783 fpr 5789 fmptap 5797 riotav 5928 dmoprab 6049 rnoprab2 6052 mpov 6058 mpomptx 6059 abrexex2g 6228 abrexex2 6232 1stval2 6264 2ndval2 6265 fo1st 6266 fo2nd 6267 xp2 6282 dfoprab4f 6302 fmpoco 6325 tposmpo 6390 recsfval 6424 frecfnom 6510 freccllem 6511 frecfcllem 6513 frecsuclem 6515 df2o3 6539 o1p1e2 6577 ecqs 6707 qliftf 6730 erovlem 6737 mapsnf1o3 6807 ixp0x 6836 xpf1o 6966 djuunr 7194 dmaddpq 7527 dmmulpq 7528 enq0enq 7579 nqprlu 7695 m1p1sr 7908 m1m1sr 7909 caucvgsr 7950 dfcnqs 7989 3m1e2 9191 2p2e4 9198 3p2e5 9213 3p3e6 9214 4p2e6 9215 4p3e7 9216 4p4e8 9217 5p2e7 9218 5p3e8 9219 5p4e9 9220 6p2e8 9221 6p3e9 9222 7p2e9 9223 nn0supp 9382 nnzrab 9431 nn0zrab 9432 dec0u 9559 dec0h 9560 decsuc 9569 decsucc 9579 numma 9582 decma 9589 decmac 9590 decma2c 9591 decadd 9592 decaddc 9593 decmul1 9602 decmul1c 9603 decmul2c 9604 5p5e10 9609 6p4e10 9610 7p3e10 9613 8p2e10 9618 5t5e25 9641 6t6e36 9646 8t6e48 9657 nn0uz 9718 nnuz 9719 xaddcom 10018 ioomax 10105 iccmax 10106 ioopos 10107 ioorp 10108 fseq1p1m1 10251 fzo0to2pr 10384 fzo0to3tp 10385 frecfzennn 10608 irec 10821 sq10e99m1 10895 facnn 10909 fac0 10910 faclbnd2 10924 zfz1isolemsplit 11020 minmax 11656 xrminmax 11691 fisumrev2 11872 fsumparts 11896 fsumiun 11903 isumnn0nn 11919 fprod2d 12049 fprodle 12066 ege2le3 12097 cos1bnd 12185 efieq1re 12198 eirraplem 12203 3dvds 12290 m1bits 12386 phiprmpw 12659 4sqlem11 12839 4sqlem19 12847 dec5dvds 12850 decsplit1 12866 unennn 12883 ennnfonelemjn 12888 qnnen 12917 strle1g 13053 quslem 13271 rmodislmod 14228 tgrest 14756 uniretop 15112 cnfldtopn 15126 dvexp 15298 dvef 15314 elply2 15322 cospi 15387 sincos6thpi 15429 lgsdir2lem2 15621 lgsquadlem2 15670 lgsquad2lem2 15674 2lgsoddprmlem3c 15701 bj-omind 16069 |
| Copyright terms: Public domain | W3C validator |