Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | |
eqtr4i.2 |
Ref | Expression |
---|---|
eqtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 | |
2 | eqtr4i.2 | . . 3 | |
3 | 2 | eqcomi 2169 | . 2 |
4 | 1, 3 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtr2i 2192 3eqtr2ri 2193 3eqtr4i 2196 3eqtr4ri 2197 rabab 2747 cbvralcsf 3107 cbvrexcsf 3108 cbvrabcsf 3110 dfin5 3123 dfdif2 3124 uneqin 3373 unrab 3393 inrab 3394 inrab2 3395 difrab 3396 dfrab3ss 3400 rabun2 3401 difidALT 3478 difdifdirss 3493 dfif3 3533 tpidm 3678 dfint2 3826 iunrab 3913 uniiun 3919 intiin 3920 0iin 3924 mptv 4079 xpundi 4660 xpundir 4661 resiun2 4904 resopab 4928 opabresid 4937 dfse2 4977 cnvun 5009 cnvin 5011 imaundir 5017 imainrect 5049 cnvcnv2 5057 cnvcnvres 5067 dmtpop 5079 rnsnopg 5082 rnco2 5111 dmco 5112 co01 5118 unidmrn 5136 dfdm2 5138 funimaexg 5272 dfmpt3 5310 mptun 5319 funcocnv2 5457 fnasrn 5663 fnasrng 5665 fpr 5667 fmptap 5675 riotav 5803 dmoprab 5923 rnoprab2 5926 mpov 5932 mpomptx 5933 abrexex2g 6088 abrexex2 6092 1stval2 6123 2ndval2 6124 fo1st 6125 fo2nd 6126 xp2 6141 dfoprab4f 6161 fmpoco 6184 tposmpo 6249 recsfval 6283 frecfnom 6369 freccllem 6370 frecfcllem 6372 frecsuclem 6374 df2o3 6398 o1p1e2 6436 ecqs 6563 qliftf 6586 erovlem 6593 mapsnf1o3 6663 ixp0x 6692 xpf1o 6810 djuunr 7031 dmaddpq 7320 dmmulpq 7321 enq0enq 7372 nqprlu 7488 m1p1sr 7701 m1m1sr 7702 caucvgsr 7743 dfcnqs 7782 3m1e2 8977 2p2e4 8984 3p2e5 8998 3p3e6 8999 4p2e6 9000 4p3e7 9001 4p4e8 9002 5p2e7 9003 5p3e8 9004 5p4e9 9005 6p2e8 9006 6p3e9 9007 7p2e9 9008 nn0supp 9166 nnzrab 9215 nn0zrab 9216 dec0u 9342 dec0h 9343 decsuc 9352 decsucc 9362 numma 9365 decma 9372 decmac 9373 decma2c 9374 decadd 9375 decaddc 9376 decmul1 9385 decmul1c 9386 decmul2c 9387 5p5e10 9392 6p4e10 9393 7p3e10 9396 8p2e10 9401 5t5e25 9424 6t6e36 9429 8t6e48 9440 nn0uz 9500 nnuz 9501 xaddcom 9797 ioomax 9884 iccmax 9885 ioopos 9886 ioorp 9887 fseq1p1m1 10029 fzo0to2pr 10153 fzo0to3tp 10154 frecfzennn 10361 irec 10554 sq10e99m1 10626 facnn 10640 fac0 10641 faclbnd2 10655 zfz1isolemsplit 10751 minmax 11171 xrminmax 11206 fisumrev2 11387 fsumparts 11411 fsumiun 11418 isumnn0nn 11434 fprod2d 11564 fprodle 11581 ege2le3 11612 cos1bnd 11700 efieq1re 11712 eirraplem 11717 phiprmpw 12154 unennn 12330 ennnfonelemjn 12335 qnnen 12364 strle1g 12485 tgrest 12809 uniretop 13165 dvexp 13315 dvef 13328 cospi 13361 sincos6thpi 13403 lgsdir2lem2 13570 bj-omind 13816 |
Copyright terms: Public domain | W3C validator |