![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 |
![]() ![]() ![]() ![]() |
eqtr4i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqtr4i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2099 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtri 2115 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 ax-17 1471 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 |
This theorem is referenced by: 3eqtr2i 2121 3eqtr2ri 2122 3eqtr4i 2125 3eqtr4ri 2126 rabab 2654 cbvralcsf 3004 cbvrexcsf 3005 cbvrabcsf 3007 dfin5 3020 dfdif2 3021 uneqin 3266 unrab 3286 inrab 3287 inrab2 3288 difrab 3289 dfrab3ss 3293 rabun2 3294 difidALT 3371 difdifdirss 3386 dfif3 3426 tpidm 3564 dfint2 3712 iunrab 3799 uniiun 3805 intiin 3806 0iin 3810 mptv 3957 xpundi 4523 xpundir 4524 resiun2 4765 resopab 4789 opabresid 4798 dfse2 4838 cnvun 4870 cnvin 4872 imaundir 4878 imainrect 4910 cnvcnv2 4918 cnvcnvres 4928 dmtpop 4940 rnsnopg 4943 rnco2 4972 dmco 4973 co01 4979 unidmrn 4997 dfdm2 4999 funimaexg 5132 dfmpt3 5170 mptun 5178 funcocnv2 5313 fnasrn 5514 fnasrng 5516 fpr 5518 fmptap 5526 riotav 5651 dmoprab 5767 rnoprab2 5770 mpt2v 5776 mpt2mptx 5777 abrexex2g 5929 abrexex2 5933 1stval2 5964 2ndval2 5965 fo1st 5966 fo2nd 5967 xp2 5981 dfoprab4f 6001 fmpt2co 6019 tposmpt2 6084 recsfval 6118 frecfnom 6204 freccllem 6205 frecfcllem 6207 frecsuclem 6209 df2o3 6233 o1p1e2 6269 ecqs 6394 qliftf 6417 erovlem 6424 mapsnf1o3 6494 ixp0x 6523 xpf1o 6640 djuunr 6838 dmaddpq 7035 dmmulpq 7036 enq0enq 7087 nqprlu 7203 m1p1sr 7403 m1m1sr 7404 caucvgsr 7444 dfcnqs 7475 3m1e2 8640 2p2e4 8641 3p2e5 8655 3p3e6 8656 4p2e6 8657 4p3e7 8658 4p4e8 8659 5p2e7 8660 5p3e8 8661 5p4e9 8662 6p2e8 8663 6p3e9 8664 7p2e9 8665 nn0supp 8823 nnzrab 8872 nn0zrab 8873 dec0u 8996 dec0h 8997 decsuc 9006 decsucc 9016 numma 9019 decma 9026 decmac 9027 decma2c 9028 decadd 9029 decaddc 9030 decmul1 9039 decmul1c 9040 decmul2c 9041 5p5e10 9046 6p4e10 9047 7p3e10 9050 8p2e10 9055 5t5e25 9078 6t6e36 9083 8t6e48 9094 nn0uz 9152 nnuz 9153 xaddcom 9427 ioomax 9514 iccmax 9515 ioopos 9516 ioorp 9517 fseq1p1m1 9657 fzo0to2pr 9778 fzo0to3tp 9779 frecfzennn 9982 irec 10185 sq10e99m1 10253 facnn 10266 fac0 10267 faclbnd2 10281 zfz1isolemsplit 10374 minmax 10792 xrminmax 10824 fisumrev2 11005 fsumparts 11029 fsumiun 11036 isumnn0nn 11052 ege2le3 11126 cos1bnd 11215 efieq1re 11226 eirraplem 11229 phiprmpw 11641 unennn 11653 strle1g 11749 tgrest 12037 uniretop 12320 bj-omind 12553 |
Copyright terms: Public domain | W3C validator |