| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 |
|
| eqtr4i.2 |
|
| Ref | Expression |
|---|---|
| eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 |
. 2
| |
| 2 | eqtr4i.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr2i 2232 3eqtr2ri 2233 3eqtr4i 2236 3eqtr4ri 2237 rabab 2793 cbvralcsf 3156 cbvrexcsf 3157 cbvrabcsf 3159 dfin5 3173 dfdif2 3174 uneqin 3424 unrab 3444 inrab 3445 inrab2 3446 difrab 3447 dfrab3ss 3451 rabun2 3452 difidALT 3530 difdifdirss 3545 dfif3 3584 tpidm 3735 dfint2 3887 iunrab 3975 uniiun 3981 intiin 3982 0iin 3986 mptv 4141 xpundi 4731 xpundir 4732 resiun2 4979 resopab 5003 mptresid 5013 dfse2 5055 cnvun 5088 cnvin 5090 imaundir 5096 imainrect 5128 cnvcnv2 5136 cnvcnvres 5146 dmtpop 5158 rnsnopg 5161 rnco2 5190 dmco 5191 co01 5197 unidmrn 5215 dfdm2 5217 funimaexg 5358 dfmpt3 5398 mptun 5407 funcocnv2 5547 fnasrn 5758 fnasrng 5760 fpr 5766 fmptap 5774 riotav 5905 dmoprab 6026 rnoprab2 6029 mpov 6035 mpomptx 6036 abrexex2g 6205 abrexex2 6209 1stval2 6241 2ndval2 6242 fo1st 6243 fo2nd 6244 xp2 6259 dfoprab4f 6279 fmpoco 6302 tposmpo 6367 recsfval 6401 frecfnom 6487 freccllem 6488 frecfcllem 6490 frecsuclem 6492 df2o3 6516 o1p1e2 6554 ecqs 6684 qliftf 6707 erovlem 6714 mapsnf1o3 6784 ixp0x 6813 xpf1o 6941 djuunr 7168 dmaddpq 7492 dmmulpq 7493 enq0enq 7544 nqprlu 7660 m1p1sr 7873 m1m1sr 7874 caucvgsr 7915 dfcnqs 7954 3m1e2 9156 2p2e4 9163 3p2e5 9178 3p3e6 9179 4p2e6 9180 4p3e7 9181 4p4e8 9182 5p2e7 9183 5p3e8 9184 5p4e9 9185 6p2e8 9186 6p3e9 9187 7p2e9 9188 nn0supp 9347 nnzrab 9396 nn0zrab 9397 dec0u 9524 dec0h 9525 decsuc 9534 decsucc 9544 numma 9547 decma 9554 decmac 9555 decma2c 9556 decadd 9557 decaddc 9558 decmul1 9567 decmul1c 9568 decmul2c 9569 5p5e10 9574 6p4e10 9575 7p3e10 9578 8p2e10 9583 5t5e25 9606 6t6e36 9611 8t6e48 9622 nn0uz 9683 nnuz 9684 xaddcom 9983 ioomax 10070 iccmax 10071 ioopos 10072 ioorp 10073 fseq1p1m1 10216 fzo0to2pr 10347 fzo0to3tp 10348 frecfzennn 10571 irec 10784 sq10e99m1 10858 facnn 10872 fac0 10873 faclbnd2 10887 zfz1isolemsplit 10983 minmax 11541 xrminmax 11576 fisumrev2 11757 fsumparts 11781 fsumiun 11788 isumnn0nn 11804 fprod2d 11934 fprodle 11951 ege2le3 11982 cos1bnd 12070 efieq1re 12083 eirraplem 12088 3dvds 12175 m1bits 12271 phiprmpw 12544 4sqlem11 12724 4sqlem19 12732 dec5dvds 12735 decsplit1 12751 unennn 12768 ennnfonelemjn 12773 qnnen 12802 strle1g 12938 quslem 13156 rmodislmod 14113 tgrest 14641 uniretop 14997 cnfldtopn 15011 dvexp 15183 dvef 15199 elply2 15207 cospi 15272 sincos6thpi 15314 lgsdir2lem2 15506 lgsquadlem2 15555 lgsquad2lem2 15559 2lgsoddprmlem3c 15586 bj-omind 15874 |
| Copyright terms: Public domain | W3C validator |