Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | |
eqtr4i.2 |
Ref | Expression |
---|---|
eqtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 | |
2 | eqtr4i.2 | . . 3 | |
3 | 2 | eqcomi 2158 | . 2 |
4 | 1, 3 | eqtri 2175 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 |
This theorem is referenced by: 3eqtr2i 2181 3eqtr2ri 2182 3eqtr4i 2185 3eqtr4ri 2186 rabab 2730 cbvralcsf 3089 cbvrexcsf 3090 cbvrabcsf 3092 dfin5 3105 dfdif2 3106 uneqin 3354 unrab 3374 inrab 3375 inrab2 3376 difrab 3377 dfrab3ss 3381 rabun2 3382 difidALT 3459 difdifdirss 3474 dfif3 3514 tpidm 3657 dfint2 3805 iunrab 3892 uniiun 3898 intiin 3899 0iin 3903 mptv 4057 xpundi 4635 xpundir 4636 resiun2 4879 resopab 4903 opabresid 4912 dfse2 4952 cnvun 4984 cnvin 4986 imaundir 4992 imainrect 5024 cnvcnv2 5032 cnvcnvres 5042 dmtpop 5054 rnsnopg 5057 rnco2 5086 dmco 5087 co01 5093 unidmrn 5111 dfdm2 5113 funimaexg 5247 dfmpt3 5285 mptun 5294 funcocnv2 5432 fnasrn 5638 fnasrng 5640 fpr 5642 fmptap 5650 riotav 5775 dmoprab 5892 rnoprab2 5895 mpov 5901 mpomptx 5902 abrexex2g 6058 abrexex2 6062 1stval2 6093 2ndval2 6094 fo1st 6095 fo2nd 6096 xp2 6111 dfoprab4f 6131 fmpoco 6153 tposmpo 6218 recsfval 6252 frecfnom 6338 freccllem 6339 frecfcllem 6341 frecsuclem 6343 df2o3 6367 o1p1e2 6404 ecqs 6531 qliftf 6554 erovlem 6561 mapsnf1o3 6631 ixp0x 6660 xpf1o 6778 djuunr 6996 dmaddpq 7278 dmmulpq 7279 enq0enq 7330 nqprlu 7446 m1p1sr 7659 m1m1sr 7660 caucvgsr 7701 dfcnqs 7740 3m1e2 8932 2p2e4 8939 3p2e5 8953 3p3e6 8954 4p2e6 8955 4p3e7 8956 4p4e8 8957 5p2e7 8958 5p3e8 8959 5p4e9 8960 6p2e8 8961 6p3e9 8962 7p2e9 8963 nn0supp 9121 nnzrab 9170 nn0zrab 9171 dec0u 9294 dec0h 9295 decsuc 9304 decsucc 9314 numma 9317 decma 9324 decmac 9325 decma2c 9326 decadd 9327 decaddc 9328 decmul1 9337 decmul1c 9338 decmul2c 9339 5p5e10 9344 6p4e10 9345 7p3e10 9348 8p2e10 9353 5t5e25 9376 6t6e36 9381 8t6e48 9392 nn0uz 9452 nnuz 9453 xaddcom 9743 ioomax 9830 iccmax 9831 ioopos 9832 ioorp 9833 fseq1p1m1 9974 fzo0to2pr 10095 fzo0to3tp 10096 frecfzennn 10303 irec 10496 sq10e99m1 10564 facnn 10578 fac0 10579 faclbnd2 10593 zfz1isolemsplit 10686 minmax 11106 xrminmax 11139 fisumrev2 11320 fsumparts 11344 fsumiun 11351 isumnn0nn 11367 fprod2d 11497 fprodle 11514 ege2le3 11545 cos1bnd 11633 efieq1re 11645 eirraplem 11650 phiprmpw 12065 unennn 12077 ennnfonelemjn 12082 qnnen 12111 strle1g 12219 tgrest 12508 uniretop 12864 dvexp 13014 dvef 13027 cospi 13060 sincos6thpi 13102 bj-omind 13447 |
Copyright terms: Public domain | W3C validator |