| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqtr4i.1 | 
 | 
| eqtr4i.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqtr4i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr4i.1 | 
. 2
 | |
| 2 | eqtr4i.2 | 
. . 3
 | |
| 3 | 2 | eqcomi 2200 | 
. 2
 | 
| 4 | 1, 3 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: 3eqtr2i 2223 3eqtr2ri 2224 3eqtr4i 2227 3eqtr4ri 2228 rabab 2784 cbvralcsf 3147 cbvrexcsf 3148 cbvrabcsf 3150 dfin5 3164 dfdif2 3165 uneqin 3414 unrab 3434 inrab 3435 inrab2 3436 difrab 3437 dfrab3ss 3441 rabun2 3442 difidALT 3520 difdifdirss 3535 dfif3 3574 tpidm 3724 dfint2 3876 iunrab 3964 uniiun 3970 intiin 3971 0iin 3975 mptv 4130 xpundi 4719 xpundir 4720 resiun2 4966 resopab 4990 mptresid 5000 dfse2 5042 cnvun 5075 cnvin 5077 imaundir 5083 imainrect 5115 cnvcnv2 5123 cnvcnvres 5133 dmtpop 5145 rnsnopg 5148 rnco2 5177 dmco 5178 co01 5184 unidmrn 5202 dfdm2 5204 funimaexg 5342 dfmpt3 5380 mptun 5389 funcocnv2 5529 fnasrn 5740 fnasrng 5742 fpr 5744 fmptap 5752 riotav 5883 dmoprab 6003 rnoprab2 6006 mpov 6012 mpomptx 6013 abrexex2g 6177 abrexex2 6181 1stval2 6213 2ndval2 6214 fo1st 6215 fo2nd 6216 xp2 6231 dfoprab4f 6251 fmpoco 6274 tposmpo 6339 recsfval 6373 frecfnom 6459 freccllem 6460 frecfcllem 6462 frecsuclem 6464 df2o3 6488 o1p1e2 6526 ecqs 6656 qliftf 6679 erovlem 6686 mapsnf1o3 6756 ixp0x 6785 xpf1o 6905 djuunr 7132 dmaddpq 7446 dmmulpq 7447 enq0enq 7498 nqprlu 7614 m1p1sr 7827 m1m1sr 7828 caucvgsr 7869 dfcnqs 7908 3m1e2 9110 2p2e4 9117 3p2e5 9132 3p3e6 9133 4p2e6 9134 4p3e7 9135 4p4e8 9136 5p2e7 9137 5p3e8 9138 5p4e9 9139 6p2e8 9140 6p3e9 9141 7p2e9 9142 nn0supp 9301 nnzrab 9350 nn0zrab 9351 dec0u 9477 dec0h 9478 decsuc 9487 decsucc 9497 numma 9500 decma 9507 decmac 9508 decma2c 9509 decadd 9510 decaddc 9511 decmul1 9520 decmul1c 9521 decmul2c 9522 5p5e10 9527 6p4e10 9528 7p3e10 9531 8p2e10 9536 5t5e25 9559 6t6e36 9564 8t6e48 9575 nn0uz 9636 nnuz 9637 xaddcom 9936 ioomax 10023 iccmax 10024 ioopos 10025 ioorp 10026 fseq1p1m1 10169 fzo0to2pr 10294 fzo0to3tp 10295 frecfzennn 10518 irec 10731 sq10e99m1 10805 facnn 10819 fac0 10820 faclbnd2 10834 zfz1isolemsplit 10930 minmax 11395 xrminmax 11430 fisumrev2 11611 fsumparts 11635 fsumiun 11642 isumnn0nn 11658 fprod2d 11788 fprodle 11805 ege2le3 11836 cos1bnd 11924 efieq1re 11937 eirraplem 11942 3dvds 12029 phiprmpw 12390 4sqlem11 12570 4sqlem19 12578 dec5dvds 12581 decsplit1 12597 unennn 12614 ennnfonelemjn 12619 qnnen 12648 strle1g 12784 quslem 12967 rmodislmod 13907 tgrest 14405 uniretop 14761 cnfldtopn 14775 dvexp 14947 dvef 14963 elply2 14971 cospi 15036 sincos6thpi 15078 lgsdir2lem2 15270 lgsquadlem2 15319 lgsquad2lem2 15323 2lgsoddprmlem3c 15350 bj-omind 15580 | 
| Copyright terms: Public domain | W3C validator |