![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 |
![]() ![]() ![]() ![]() |
3eqtr2i.2 |
![]() ![]() ![]() ![]() |
3eqtr2i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4i 2217 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr2i.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtri 2214 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: dfrab3 3436 iunid 3969 cnvcnv 5119 cocnvcnv2 5178 fmptap 5749 exmidfodomrlemim 7263 negdii 8305 halfpm6th 9205 numma 9494 numaddc 9498 6p5lem 9520 8p2e10 9530 binom2i 10722 0.999... 11667 flodddiv4 12078 6gcd4e2 12135 dfphi2 12361 cosq23lt0 15009 pigt3 15020 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 nninfomni 15579 |
Copyright terms: Public domain | W3C validator |