![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 |
![]() ![]() ![]() ![]() |
3eqtr2i.2 |
![]() ![]() ![]() ![]() |
3eqtr2i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4i 2217 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr2i.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtri 2214 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: dfrab3 3435 iunid 3968 cnvcnv 5118 cocnvcnv2 5177 fmptap 5748 exmidfodomrlemim 7261 negdii 8303 halfpm6th 9202 numma 9491 numaddc 9495 6p5lem 9517 8p2e10 9527 binom2i 10719 0.999... 11664 flodddiv4 12075 6gcd4e2 12132 dfphi2 12358 cosq23lt0 14968 pigt3 14979 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 nninfomni 15509 |
Copyright terms: Public domain | W3C validator |