| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 |
|
| 3eqtr2i.2 |
|
| 3eqtr2i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 |
. . 3
| |
| 2 | 3eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2229 |
. 2
|
| 4 | 3eqtr2i.3 |
. 2
| |
| 5 | 3, 4 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: dfrab3 3449 iunid 3983 cnvcnv 5135 cocnvcnv2 5194 fmptap 5774 exmidfodomrlemim 7309 negdii 8356 halfpm6th 9257 numma 9547 numaddc 9551 6p5lem 9573 8p2e10 9583 binom2i 10793 0.999... 11832 flodddiv4 12247 6gcd4e2 12316 dfphi2 12542 karatsuba 12753 cosq23lt0 15305 pigt3 15316 1sgm2ppw 15467 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 nninfomni 15956 |
| Copyright terms: Public domain | W3C validator |