ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr2i Unicode version

Theorem 3eqtr2i 2232
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
Hypotheses
Ref Expression
3eqtr2i.1  |-  A  =  B
3eqtr2i.2  |-  C  =  B
3eqtr2i.3  |-  C  =  D
Assertion
Ref Expression
3eqtr2i  |-  A  =  D

Proof of Theorem 3eqtr2i
StepHypRef Expression
1 3eqtr2i.1 . . 3  |-  A  =  B
2 3eqtr2i.2 . . 3  |-  C  =  B
31, 2eqtr4i 2229 . 2  |-  A  =  C
4 3eqtr2i.3 . 2  |-  C  =  D
53, 4eqtri 2226 1  |-  A  =  D
Colors of variables: wff set class
Syntax hints:    = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198
This theorem is referenced by:  dfrab3  3449  iunid  3983  cnvcnv  5136  cocnvcnv2  5195  fmptap  5776  exmidfodomrlemim  7311  negdii  8358  halfpm6th  9259  numma  9549  numaddc  9553  6p5lem  9575  8p2e10  9585  binom2i  10795  0.999...  11865  flodddiv4  12280  6gcd4e2  12349  dfphi2  12575  karatsuba  12786  cosq23lt0  15338  pigt3  15349  1sgm2ppw  15500  2lgsoddprmlem3c  15619  2lgsoddprmlem3d  15620  nninfomni  15993
  Copyright terms: Public domain W3C validator