Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | |
3eqtr2i.2 | |
3eqtr2i.3 |
Ref | Expression |
---|---|
3eqtr2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 | |
2 | 3eqtr2i.2 | . . 3 | |
3 | 1, 2 | eqtr4i 2194 | . 2 |
4 | 3eqtr2i.3 | . 2 | |
5 | 3, 4 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: dfrab3 3403 iunid 3928 cnvcnv 5063 cocnvcnv2 5122 fmptap 5686 exmidfodomrlemim 7178 negdii 8203 halfpm6th 9098 numma 9386 numaddc 9390 6p5lem 9412 8p2e10 9422 binom2i 10584 0.999... 11484 flodddiv4 11893 6gcd4e2 11950 dfphi2 12174 txswaphmeolem 13114 cosq23lt0 13548 pigt3 13559 nninfomni 14052 |
Copyright terms: Public domain | W3C validator |