| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) | 
| Ref | Expression | 
|---|---|
| 3eqtr2i.1 | 
 | 
| 3eqtr2i.2 | 
 | 
| 3eqtr2i.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3eqtr2i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3eqtr2i.1 | 
. . 3
 | |
| 2 | 3eqtr2i.2 | 
. . 3
 | |
| 3 | 1, 2 | eqtr4i 2220 | 
. 2
 | 
| 4 | 3eqtr2i.3 | 
. 2
 | |
| 5 | 3, 4 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: dfrab3 3439 iunid 3972 cnvcnv 5122 cocnvcnv2 5181 fmptap 5752 exmidfodomrlemim 7268 negdii 8310 halfpm6th 9211 numma 9500 numaddc 9504 6p5lem 9526 8p2e10 9536 binom2i 10740 0.999... 11686 flodddiv4 12101 6gcd4e2 12162 dfphi2 12388 karatsuba 12599 cosq23lt0 15069 pigt3 15080 1sgm2ppw 15231 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 nninfomni 15663 | 
| Copyright terms: Public domain | W3C validator |