| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 |
|
| 3eqtr2i.2 |
|
| 3eqtr2i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 |
. . 3
| |
| 2 | 3eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2231 |
. 2
|
| 4 | 3eqtr2i.3 |
. 2
| |
| 5 | 3, 4 | eqtri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: dfrab3 3457 iunid 3997 cnvcnv 5154 cocnvcnv2 5213 fmptap 5797 exmidfodomrlemim 7340 negdii 8391 halfpm6th 9292 numma 9582 numaddc 9586 6p5lem 9608 8p2e10 9618 binom2i 10830 0.999... 11947 flodddiv4 12362 6gcd4e2 12431 dfphi2 12657 karatsuba 12868 cosq23lt0 15420 pigt3 15431 1sgm2ppw 15582 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 nninfomni 16158 |
| Copyright terms: Public domain | W3C validator |