![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 |
![]() ![]() ![]() ![]() |
3eqtr2i.2 |
![]() ![]() ![]() ![]() |
3eqtr2i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4i 2201 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr2i.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtri 2198 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: dfrab3 3413 iunid 3944 cnvcnv 5083 cocnvcnv2 5142 fmptap 5709 exmidfodomrlemim 7203 negdii 8244 halfpm6th 9142 numma 9430 numaddc 9434 6p5lem 9456 8p2e10 9466 binom2i 10632 0.999... 11532 flodddiv4 11942 6gcd4e2 11999 dfphi2 12223 txswaphmeolem 13960 cosq23lt0 14394 pigt3 14405 2lgsoddprmlem3c 14597 2lgsoddprmlem3d 14598 nninfomni 14909 |
Copyright terms: Public domain | W3C validator |