| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 |
|
| 3eqtr2i.2 |
|
| 3eqtr2i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 |
. . 3
| |
| 2 | 3eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2253 |
. 2
|
| 4 | 3eqtr2i.3 |
. 2
| |
| 5 | 3, 4 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: dfrab3 3480 iunid 4021 cnvcnv 5181 cocnvcnv2 5240 fmptap 5829 exmidfodomrlemim 7379 negdii 8430 halfpm6th 9331 numma 9621 numaddc 9625 6p5lem 9647 8p2e10 9657 binom2i 10870 0.999... 12032 flodddiv4 12447 6gcd4e2 12516 dfphi2 12742 karatsuba 12953 cosq23lt0 15507 pigt3 15518 1sgm2ppw 15669 2lgsoddprmlem3c 15788 2lgsoddprmlem3d 15789 nninfomni 16385 |
| Copyright terms: Public domain | W3C validator |