| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 |
|
| 3eqtr2i.2 |
|
| 3eqtr2i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 |
. . 3
| |
| 2 | 3eqtr2i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2229 |
. 2
|
| 4 | 3eqtr2i.3 |
. 2
| |
| 5 | 3, 4 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: dfrab3 3449 iunid 3983 cnvcnv 5136 cocnvcnv2 5195 fmptap 5776 exmidfodomrlemim 7311 negdii 8358 halfpm6th 9259 numma 9549 numaddc 9553 6p5lem 9575 8p2e10 9585 binom2i 10795 0.999... 11865 flodddiv4 12280 6gcd4e2 12349 dfphi2 12575 karatsuba 12786 cosq23lt0 15338 pigt3 15349 1sgm2ppw 15500 2lgsoddprmlem3c 15619 2lgsoddprmlem3d 15620 nninfomni 15993 |
| Copyright terms: Public domain | W3C validator |