| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3eqtr3i.1 | 
 | 
| 3eqtr3i.2 | 
 | 
| 3eqtr3i.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3eqtr3i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3eqtr3i.1 | 
. . 3
 | |
| 2 | 3eqtr3i.2 | 
. . 3
 | |
| 3 | 1, 2 | eqtr3i 2219 | 
. 2
 | 
| 4 | 3eqtr3i.3 | 
. 2
 | |
| 5 | 3, 4 | eqtr3i 2219 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: csbvarg 3112 un12 3321 in12 3374 indif1 3408 difundir 3416 difindir 3418 dif32 3426 resmpt3 4995 xp0 5089 fvsnun1 5759 caov12 6112 caov13 6114 djuassen 7284 xpdjuen 7285 rec1nq 7462 halfnqq 7477 negsubdii 8311 halfpm6th 9211 decmul1 9520 i4 10734 fac4 10825 imi 11065 resqrexlemover 11175 ef01bndlem 11921 modsubi 12588 gcdmodi 12590 numexpp1 12593 karatsuba 12599 znnen 12615 sn0cld 14373 cospi 15036 sincos4thpi 15076 sincos3rdpi 15079 lgsdir2lem1 15269 lgsdir2lem5 15273 2lgsoddprmlem3d 15351 ex-bc 15375 ex-gcd 15377 | 
| Copyright terms: Public domain | W3C validator |