![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 |
![]() ![]() ![]() ![]() |
3eqtr3i.2 |
![]() ![]() ![]() ![]() |
3eqtr3i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr3i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr3i 2200 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr3i.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr3i 2200 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: csbvarg 3086 un12 3294 in12 3347 indif1 3381 difundir 3389 difindir 3391 dif32 3399 resmpt3 4957 xp0 5049 fvsnun1 5714 caov12 6063 caov13 6065 djuassen 7216 xpdjuen 7217 rec1nq 7394 halfnqq 7409 negsubdii 8242 halfpm6th 9139 decmul1 9447 i4 10623 fac4 10713 imi 10909 resqrexlemover 11019 ef01bndlem 11764 znnen 12399 sn0cld 13640 cospi 14224 sincos4thpi 14264 sincos3rdpi 14267 lgsdir2lem1 14432 lgsdir2lem5 14436 2lgsoddprmlem3d 14461 ex-bc 14484 ex-gcd 14486 |
Copyright terms: Public domain | W3C validator |