| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 |
|
| 3eqtr3i.2 |
|
| 3eqtr3i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 |
. . 3
| |
| 2 | 3eqtr3i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr3i 2228 |
. 2
|
| 4 | 3eqtr3i.3 |
. 2
| |
| 5 | 3, 4 | eqtr3i 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: csbvarg 3121 un12 3331 in12 3384 indif1 3418 difundir 3426 difindir 3428 dif32 3436 resmpt3 5009 xp0 5103 fvsnun1 5783 caov12 6137 caov13 6139 djuassen 7331 xpdjuen 7332 rec1nq 7510 halfnqq 7525 negsubdii 8359 halfpm6th 9259 decmul1 9569 i4 10789 fac4 10880 imi 11244 resqrexlemover 11354 ef01bndlem 12100 modsubi 12775 gcdmodi 12777 numexpp1 12780 karatsuba 12786 znnen 12802 sn0cld 14642 cospi 15305 sincos4thpi 15345 sincos3rdpi 15348 lgsdir2lem1 15538 lgsdir2lem5 15542 2lgsoddprmlem3d 15620 ex-bc 15702 ex-gcd 15704 |
| Copyright terms: Public domain | W3C validator |