ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3i Unicode version

Theorem 3eqtr3i 2258
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr3i.1  |-  A  =  B
3eqtr3i.2  |-  A  =  C
3eqtr3i.3  |-  B  =  D
Assertion
Ref Expression
3eqtr3i  |-  C  =  D

Proof of Theorem 3eqtr3i
StepHypRef Expression
1 3eqtr3i.1 . . 3  |-  A  =  B
2 3eqtr3i.2 . . 3  |-  A  =  C
31, 2eqtr3i 2252 . 2  |-  B  =  C
4 3eqtr3i.3 . 2  |-  B  =  D
53, 4eqtr3i 2252 1  |-  C  =  D
Colors of variables: wff set class
Syntax hints:    = wceq 1395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  csbvarg  3152  un12  3362  in12  3415  indif1  3449  difundir  3457  difindir  3459  dif32  3467  resmpt3  5054  xp0  5148  fvsnun1  5836  caov12  6194  caov13  6196  djuassen  7399  xpdjuen  7400  rec1nq  7582  halfnqq  7597  negsubdii  8431  halfpm6th  9331  decmul1  9641  i4  10864  fac4  10955  imi  11411  resqrexlemover  11521  ef01bndlem  12267  modsubi  12942  gcdmodi  12944  numexpp1  12947  karatsuba  12953  znnen  12969  sn0cld  14811  cospi  15474  sincos4thpi  15514  sincos3rdpi  15517  lgsdir2lem1  15707  lgsdir2lem5  15711  2lgsoddprmlem3d  15789  ex-bc  16093  ex-gcd  16095
  Copyright terms: Public domain W3C validator