| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 |
|
| 3eqtr3i.2 |
|
| 3eqtr3i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 |
. . 3
| |
| 2 | 3eqtr3i.2 |
. . 3
| |
| 3 | 1, 2 | eqtr3i 2252 |
. 2
|
| 4 | 3eqtr3i.3 |
. 2
| |
| 5 | 3, 4 | eqtr3i 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: csbvarg 3152 un12 3362 in12 3415 indif1 3449 difundir 3457 difindir 3459 dif32 3467 resmpt3 5054 xp0 5148 fvsnun1 5836 caov12 6194 caov13 6196 djuassen 7399 xpdjuen 7400 rec1nq 7582 halfnqq 7597 negsubdii 8431 halfpm6th 9331 decmul1 9641 i4 10864 fac4 10955 imi 11411 resqrexlemover 11521 ef01bndlem 12267 modsubi 12942 gcdmodi 12944 numexpp1 12947 karatsuba 12953 znnen 12969 sn0cld 14811 cospi 15474 sincos4thpi 15514 sincos3rdpi 15517 lgsdir2lem1 15707 lgsdir2lem5 15711 2lgsoddprmlem3d 15789 ex-bc 16093 ex-gcd 16095 |
| Copyright terms: Public domain | W3C validator |