![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sinhalfpilem | Unicode version |
Description: Lemma for sinhalfpi 14302 and coshalfpi 14303. (Contributed by Paul Chapman, 23-Jan-2008.) |
Ref | Expression |
---|---|
sinhalfpilem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 10616 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pire 14292 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() | |
3 | 2 | recni 7971 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() |
4 | 2cn 8992 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() | |
5 | 2ap0 9014 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() | |
6 | 3, 4, 5 | divcanap2i 8714 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | fveq2i 5520 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2 | rehalfcli 9169 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | recni 7971 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | sin2t 11759 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | eqtr3i 2200 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | sinpi 14291 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | eqtr3i 2200 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 0cn 7951 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() | |
16 | sincl 11716 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 9, 16 | ax-mp 5 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | coscl 11717 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 9, 18 | ax-mp 5 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 17, 19 | mulcli 7964 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 15, 4, 20, 5 | divmulapi 8725 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 14, 21 | mpbir 146 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 4, 5 | div0api 8705 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 22, 23 | eqtr3i 2200 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | resincl 11730 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 8, 25 | ax-mp 5 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 2re 8991 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() | |
28 | pipos 14294 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() | |
29 | 2pos 9012 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() | |
30 | 2, 27, 28, 29 | divgt0ii 8878 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 4re 8998 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() | |
32 | pigt2lt4 14290 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 32 | simpri 113 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() |
34 | 2, 31, 33 | ltleii 8062 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() |
35 | 27, 29 | pm3.2i 272 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | ledivmul 8836 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | 2, 27, 35, 36 | mp3an 1337 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 2t2e4 9075 |
. . . . . . . . . . . . . . . . 17
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 38 | breq2i 4013 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 37, 39 | bitr2i 185 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 34, 40 | mpbi 145 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 0xr 8006 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() | |
43 | elioc2 9938 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
44 | 42, 27, 43 | mp2an 426 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 8, 30, 41, 44 | mpbir3an 1179 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | sin02gt0 11773 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 26, 47 | gt0ap0ii 8587 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 15, 17, 19, 48 | divmulapi 8725 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 24, 49 | mpbir 146 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 17, 48 | div0api 8705 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 50, 51 | eqtr3i 2200 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 52 | oveq1i 5887 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | sq0 10613 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | 53, 54 | eqtri 2198 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 55 | oveq2i 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | sincossq 11758 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
58 | 9, 57 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | 56, 58 | eqtr3i 2200 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
60 | 17 | sqcli 10603 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
61 | 60 | addid1i 8101 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
62 | 1, 59, 61 | 3eqtr2ri 2205 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
63 | 0re 7959 |
. . . . 5
![]() ![]() ![]() ![]() | |
64 | 63, 26, 47 | ltleii 8062 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 1re 7958 |
. . . 4
![]() ![]() ![]() ![]() | |
66 | 0le1 8440 |
. . . 4
![]() ![]() ![]() ![]() | |
67 | sq11 10595 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
68 | 26, 64, 65, 66, 67 | mp4an 427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
69 | 62, 68 | mpbi 145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
70 | 69, 52 | pm3.2i 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 ax-pre-suploc 7934 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-map 6652 df-pm 6653 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-ioo 9894 df-ioc 9895 df-ico 9896 df-icc 9897 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-shft 10826 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 df-sin 11660 df-cos 11661 df-pi 11663 df-rest 12695 df-topgen 12714 df-psmet 13532 df-xmet 13533 df-met 13534 df-bl 13535 df-mopn 13536 df-top 13583 df-topon 13596 df-bases 13628 df-ntr 13681 df-cn 13773 df-cnp 13774 df-tx 13838 df-cncf 14143 df-limced 14210 df-dvap 14211 |
This theorem is referenced by: sinhalfpi 14302 coshalfpi 14303 |
Copyright terms: Public domain | W3C validator |