| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinhalfpilem | Unicode version | ||
| Description: Lemma for sinhalfpi 15301 and coshalfpi 15302. (Contributed by Paul Chapman, 23-Jan-2008.) |
| Ref | Expression |
|---|---|
| sinhalfpilem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 10780 |
. . . 4
| |
| 2 | pire 15291 |
. . . . . . . . . . . . . . . . 17
| |
| 3 | 2 | recni 8086 |
. . . . . . . . . . . . . . . 16
|
| 4 | 2cn 9109 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 2ap0 9131 |
. . . . . . . . . . . . . . . 16
| |
| 6 | 3, 4, 5 | divcanap2i 8830 |
. . . . . . . . . . . . . . 15
|
| 7 | 6 | fveq2i 5581 |
. . . . . . . . . . . . . 14
|
| 8 | 2 | rehalfcli 9288 |
. . . . . . . . . . . . . . . 16
|
| 9 | 8 | recni 8086 |
. . . . . . . . . . . . . . 15
|
| 10 | sin2t 12093 |
. . . . . . . . . . . . . . 15
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 12 | 7, 11 | eqtr3i 2228 |
. . . . . . . . . . . . 13
|
| 13 | sinpi 15290 |
. . . . . . . . . . . . 13
| |
| 14 | 12, 13 | eqtr3i 2228 |
. . . . . . . . . . . 12
|
| 15 | 0cn 8066 |
. . . . . . . . . . . . 13
| |
| 16 | sincl 12050 |
. . . . . . . . . . . . . . 15
| |
| 17 | 9, 16 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 18 | coscl 12051 |
. . . . . . . . . . . . . . 15
| |
| 19 | 9, 18 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | mulcli 8079 |
. . . . . . . . . . . . 13
|
| 21 | 15, 4, 20, 5 | divmulapi 8841 |
. . . . . . . . . . . 12
|
| 22 | 14, 21 | mpbir 146 |
. . . . . . . . . . 11
|
| 23 | 4, 5 | div0api 8821 |
. . . . . . . . . . 11
|
| 24 | 22, 23 | eqtr3i 2228 |
. . . . . . . . . 10
|
| 25 | resincl 12064 |
. . . . . . . . . . . . 13
| |
| 26 | 8, 25 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 27 | 2re 9108 |
. . . . . . . . . . . . . . 15
| |
| 28 | pipos 15293 |
. . . . . . . . . . . . . . 15
| |
| 29 | 2pos 9129 |
. . . . . . . . . . . . . . 15
| |
| 30 | 2, 27, 28, 29 | divgt0ii 8994 |
. . . . . . . . . . . . . 14
|
| 31 | 4re 9115 |
. . . . . . . . . . . . . . . 16
| |
| 32 | pigt2lt4 15289 |
. . . . . . . . . . . . . . . . 17
| |
| 33 | 32 | simpri 113 |
. . . . . . . . . . . . . . . 16
|
| 34 | 2, 31, 33 | ltleii 8177 |
. . . . . . . . . . . . . . 15
|
| 35 | 27, 29 | pm3.2i 272 |
. . . . . . . . . . . . . . . . 17
|
| 36 | ledivmul 8952 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | 2, 27, 35, 36 | mp3an 1350 |
. . . . . . . . . . . . . . . 16
|
| 38 | 2t2e4 9193 |
. . . . . . . . . . . . . . . . 17
| |
| 39 | 38 | breq2i 4053 |
. . . . . . . . . . . . . . . 16
|
| 40 | 37, 39 | bitr2i 185 |
. . . . . . . . . . . . . . 15
|
| 41 | 34, 40 | mpbi 145 |
. . . . . . . . . . . . . 14
|
| 42 | 0xr 8121 |
. . . . . . . . . . . . . . 15
| |
| 43 | elioc2 10060 |
. . . . . . . . . . . . . . 15
| |
| 44 | 42, 27, 43 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 45 | 8, 30, 41, 44 | mpbir3an 1182 |
. . . . . . . . . . . . 13
|
| 46 | sin02gt0 12108 |
. . . . . . . . . . . . 13
| |
| 47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 48 | 26, 47 | gt0ap0ii 8703 |
. . . . . . . . . . 11
|
| 49 | 15, 17, 19, 48 | divmulapi 8841 |
. . . . . . . . . 10
|
| 50 | 24, 49 | mpbir 146 |
. . . . . . . . 9
|
| 51 | 17, 48 | div0api 8821 |
. . . . . . . . 9
|
| 52 | 50, 51 | eqtr3i 2228 |
. . . . . . . 8
|
| 53 | 52 | oveq1i 5956 |
. . . . . . 7
|
| 54 | sq0 10777 |
. . . . . . 7
| |
| 55 | 53, 54 | eqtri 2226 |
. . . . . 6
|
| 56 | 55 | oveq2i 5957 |
. . . . 5
|
| 57 | sincossq 12092 |
. . . . . 6
| |
| 58 | 9, 57 | ax-mp 5 |
. . . . 5
|
| 59 | 56, 58 | eqtr3i 2228 |
. . . 4
|
| 60 | 17 | sqcli 10767 |
. . . . 5
|
| 61 | 60 | addridi 8216 |
. . . 4
|
| 62 | 1, 59, 61 | 3eqtr2ri 2233 |
. . 3
|
| 63 | 0re 8074 |
. . . . 5
| |
| 64 | 63, 26, 47 | ltleii 8177 |
. . . 4
|
| 65 | 1re 8073 |
. . . 4
| |
| 66 | 0le1 8556 |
. . . 4
| |
| 67 | sq11 10759 |
. . . 4
| |
| 68 | 26, 64, 65, 66, 67 | mp4an 427 |
. . 3
|
| 69 | 62, 68 | mpbi 145 |
. 2
|
| 70 | 69, 52 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 ax-pre-suploc 8048 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-disj 4022 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-of 6160 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-map 6739 df-pm 6740 df-en 6830 df-dom 6831 df-fin 6832 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-ioo 10016 df-ioc 10017 df-ico 10018 df-icc 10019 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-fac 10873 df-bc 10895 df-ihash 10923 df-shft 11159 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 df-ef 11992 df-sin 11994 df-cos 11995 df-pi 11997 df-rest 13106 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-ntr 14601 df-cn 14693 df-cnp 14694 df-tx 14758 df-cncf 15076 df-limced 15161 df-dvap 15162 |
| This theorem is referenced by: sinhalfpi 15301 coshalfpi 15302 |
| Copyright terms: Public domain | W3C validator |