ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinhalfpilem Unicode version

Theorem sinhalfpilem 15027
Description: Lemma for sinhalfpi 15032 and coshalfpi 15033. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 sq1 10725 . . . 4  |-  ( 1 ^ 2 )  =  1
2 pire 15022 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR
32recni 8038 . . . . . . . . . . . . . . . 16  |-  pi  e.  CC
4 2cn 9061 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
5 2ap0 9083 . . . . . . . . . . . . . . . 16  |-  2 #  0
63, 4, 5divcanap2i 8782 . . . . . . . . . . . . . . 15  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
76fveq2i 5561 . . . . . . . . . . . . . 14  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( sin `  pi )
82rehalfcli 9240 . . . . . . . . . . . . . . . 16  |-  ( pi 
/  2 )  e.  RR
98recni 8038 . . . . . . . . . . . . . . 15  |-  ( pi 
/  2 )  e.  CC
10 sin2t 11914 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( pi  /  2
) ) )  =  ( 2  x.  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) ) ) )
119, 10ax-mp 5 . . . . . . . . . . . . . 14  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
127, 11eqtr3i 2219 . . . . . . . . . . . . 13  |-  ( sin `  pi )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
13 sinpi 15021 . . . . . . . . . . . . 13  |-  ( sin `  pi )  =  0
1412, 13eqtr3i 2219 . . . . . . . . . . . 12  |-  ( 2  x.  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) ) )  =  0
15 0cn 8018 . . . . . . . . . . . . 13  |-  0  e.  CC
16 sincl 11871 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( pi  / 
2 ) )  e.  CC )
179, 16ax-mp 5 . . . . . . . . . . . . . 14  |-  ( sin `  ( pi  /  2
) )  e.  CC
18 coscl 11872 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( cos `  ( pi  / 
2 ) )  e.  CC )
199, 18ax-mp 5 . . . . . . . . . . . . . 14  |-  ( cos `  ( pi  /  2
) )  e.  CC
2017, 19mulcli 8031 . . . . . . . . . . . . 13  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  e.  CC
2115, 4, 20, 5divmulapi 8793 . . . . . . . . . . . 12  |-  ( ( 0  /  2 )  =  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) )  <-> 
( 2  x.  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) ) )  =  0 )
2214, 21mpbir 146 . . . . . . . . . . 11  |-  ( 0  /  2 )  =  ( ( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) )
234, 5div0api 8773 . . . . . . . . . . 11  |-  ( 0  /  2 )  =  0
2422, 23eqtr3i 2219 . . . . . . . . . 10  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  =  0
25 resincl 11885 . . . . . . . . . . . . 13  |-  ( ( pi  /  2 )  e.  RR  ->  ( sin `  ( pi  / 
2 ) )  e.  RR )
268, 25ax-mp 5 . . . . . . . . . . . 12  |-  ( sin `  ( pi  /  2
) )  e.  RR
27 2re 9060 . . . . . . . . . . . . . . 15  |-  2  e.  RR
28 pipos 15024 . . . . . . . . . . . . . . 15  |-  0  <  pi
29 2pos 9081 . . . . . . . . . . . . . . 15  |-  0  <  2
302, 27, 28, 29divgt0ii 8946 . . . . . . . . . . . . . 14  |-  0  <  ( pi  /  2
)
31 4re 9067 . . . . . . . . . . . . . . . 16  |-  4  e.  RR
32 pigt2lt4 15020 . . . . . . . . . . . . . . . . 17  |-  ( 2  <  pi  /\  pi  <  4 )
3332simpri 113 . . . . . . . . . . . . . . . 16  |-  pi  <  4
342, 31, 33ltleii 8129 . . . . . . . . . . . . . . 15  |-  pi  <_  4
3527, 29pm3.2i 272 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  RR  /\  0  <  2 )
36 ledivmul 8904 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <_ 
2  <->  pi  <_  ( 2  x.  2 ) ) )
372, 27, 35, 36mp3an 1348 . . . . . . . . . . . . . . . 16  |-  ( ( pi  /  2 )  <_  2  <->  pi  <_  ( 2  x.  2 ) )
38 2t2e4 9145 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  2 )  =  4
3938breq2i 4041 . . . . . . . . . . . . . . . 16  |-  ( pi 
<_  ( 2  x.  2 )  <->  pi  <_  4 )
4037, 39bitr2i 185 . . . . . . . . . . . . . . 15  |-  ( pi 
<_  4  <->  ( pi  / 
2 )  <_  2
)
4134, 40mpbi 145 . . . . . . . . . . . . . 14  |-  ( pi 
/  2 )  <_ 
2
42 0xr 8073 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
43 elioc2 10011 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( pi  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) ) )
4442, 27, 43mp2an 426 . . . . . . . . . . . . . 14  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) )
458, 30, 41, 44mpbir3an 1181 . . . . . . . . . . . . 13  |-  ( pi 
/  2 )  e.  ( 0 (,] 2
)
46 sin02gt0 11929 . . . . . . . . . . . . 13  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
pi  /  2 ) ) )
4745, 46ax-mp 5 . . . . . . . . . . . 12  |-  0  <  ( sin `  (
pi  /  2 ) )
4826, 47gt0ap0ii 8655 . . . . . . . . . . 11  |-  ( sin `  ( pi  /  2
) ) #  0
4915, 17, 19, 48divmulapi 8793 . . . . . . . . . 10  |-  ( ( 0  /  ( sin `  ( pi  /  2
) ) )  =  ( cos `  (
pi  /  2 ) )  <->  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) )  =  0 )
5024, 49mpbir 146 . . . . . . . . 9  |-  ( 0  /  ( sin `  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  2 ) )
5117, 48div0api 8773 . . . . . . . . 9  |-  ( 0  /  ( sin `  (
pi  /  2 ) ) )  =  0
5250, 51eqtr3i 2219 . . . . . . . 8  |-  ( cos `  ( pi  /  2
) )  =  0
5352oveq1i 5932 . . . . . . 7  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  ( 0 ^ 2 )
54 sq0 10722 . . . . . . 7  |-  ( 0 ^ 2 )  =  0
5553, 54eqtri 2217 . . . . . 6  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  0
5655oveq2i 5933 . . . . 5  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )
57 sincossq 11913 . . . . . 6  |-  ( ( pi  /  2 )  e.  CC  ->  (
( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1 )
589, 57ax-mp 5 . . . . 5  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1
5956, 58eqtr3i 2219 . . . 4  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  1
6017sqcli 10712 . . . . 5  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  e.  CC
6160addridi 8168 . . . 4  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  ( ( sin `  (
pi  /  2 ) ) ^ 2 )
621, 59, 613eqtr2ri 2224 . . 3  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  =  ( 1 ^ 2 )
63 0re 8026 . . . . 5  |-  0  e.  RR
6463, 26, 47ltleii 8129 . . . 4  |-  0  <_  ( sin `  (
pi  /  2 ) )
65 1re 8025 . . . 4  |-  1  e.  RR
66 0le1 8508 . . . 4  |-  0  <_  1
67 sq11 10704 . . . 4  |-  ( ( ( ( sin `  (
pi  /  2 ) )  e.  RR  /\  0  <_  ( sin `  (
pi  /  2 ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( sin `  (
pi  /  2 ) )  =  1 ) )
6826, 64, 65, 66, 67mp4an 427 . . 3  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( sin `  ( pi  /  2
) )  =  1 )
6962, 68mpbi 145 . 2  |-  ( sin `  ( pi  /  2
) )  =  1
7069, 52pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   RR*cxr 8060    < clt 8061    <_ cle 8062    / cdiv 8699   2c2 9041   4c4 9043   (,]cioc 9964   ^cexp 10630   sincsin 11809   cosccos 11810   picpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  sinhalfpi  15032  coshalfpi  15033
  Copyright terms: Public domain W3C validator