ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinhalfpilem Unicode version

Theorem sinhalfpilem 14297
Description: Lemma for sinhalfpi 14302 and coshalfpi 14303. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 sq1 10616 . . . 4  |-  ( 1 ^ 2 )  =  1
2 pire 14292 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR
32recni 7971 . . . . . . . . . . . . . . . 16  |-  pi  e.  CC
4 2cn 8992 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
5 2ap0 9014 . . . . . . . . . . . . . . . 16  |-  2 #  0
63, 4, 5divcanap2i 8714 . . . . . . . . . . . . . . 15  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
76fveq2i 5520 . . . . . . . . . . . . . 14  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( sin `  pi )
82rehalfcli 9169 . . . . . . . . . . . . . . . 16  |-  ( pi 
/  2 )  e.  RR
98recni 7971 . . . . . . . . . . . . . . 15  |-  ( pi 
/  2 )  e.  CC
10 sin2t 11759 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( pi  /  2
) ) )  =  ( 2  x.  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) ) ) )
119, 10ax-mp 5 . . . . . . . . . . . . . 14  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
127, 11eqtr3i 2200 . . . . . . . . . . . . 13  |-  ( sin `  pi )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
13 sinpi 14291 . . . . . . . . . . . . 13  |-  ( sin `  pi )  =  0
1412, 13eqtr3i 2200 . . . . . . . . . . . 12  |-  ( 2  x.  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) ) )  =  0
15 0cn 7951 . . . . . . . . . . . . 13  |-  0  e.  CC
16 sincl 11716 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( pi  / 
2 ) )  e.  CC )
179, 16ax-mp 5 . . . . . . . . . . . . . 14  |-  ( sin `  ( pi  /  2
) )  e.  CC
18 coscl 11717 . . . . . . . . . . . . . . 15  |-  ( ( pi  /  2 )  e.  CC  ->  ( cos `  ( pi  / 
2 ) )  e.  CC )
199, 18ax-mp 5 . . . . . . . . . . . . . 14  |-  ( cos `  ( pi  /  2
) )  e.  CC
2017, 19mulcli 7964 . . . . . . . . . . . . 13  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  e.  CC
2115, 4, 20, 5divmulapi 8725 . . . . . . . . . . . 12  |-  ( ( 0  /  2 )  =  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) )  <-> 
( 2  x.  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) ) )  =  0 )
2214, 21mpbir 146 . . . . . . . . . . 11  |-  ( 0  /  2 )  =  ( ( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) )
234, 5div0api 8705 . . . . . . . . . . 11  |-  ( 0  /  2 )  =  0
2422, 23eqtr3i 2200 . . . . . . . . . 10  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  =  0
25 resincl 11730 . . . . . . . . . . . . 13  |-  ( ( pi  /  2 )  e.  RR  ->  ( sin `  ( pi  / 
2 ) )  e.  RR )
268, 25ax-mp 5 . . . . . . . . . . . 12  |-  ( sin `  ( pi  /  2
) )  e.  RR
27 2re 8991 . . . . . . . . . . . . . . 15  |-  2  e.  RR
28 pipos 14294 . . . . . . . . . . . . . . 15  |-  0  <  pi
29 2pos 9012 . . . . . . . . . . . . . . 15  |-  0  <  2
302, 27, 28, 29divgt0ii 8878 . . . . . . . . . . . . . 14  |-  0  <  ( pi  /  2
)
31 4re 8998 . . . . . . . . . . . . . . . 16  |-  4  e.  RR
32 pigt2lt4 14290 . . . . . . . . . . . . . . . . 17  |-  ( 2  <  pi  /\  pi  <  4 )
3332simpri 113 . . . . . . . . . . . . . . . 16  |-  pi  <  4
342, 31, 33ltleii 8062 . . . . . . . . . . . . . . 15  |-  pi  <_  4
3527, 29pm3.2i 272 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  RR  /\  0  <  2 )
36 ledivmul 8836 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <_ 
2  <->  pi  <_  ( 2  x.  2 ) ) )
372, 27, 35, 36mp3an 1337 . . . . . . . . . . . . . . . 16  |-  ( ( pi  /  2 )  <_  2  <->  pi  <_  ( 2  x.  2 ) )
38 2t2e4 9075 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  2 )  =  4
3938breq2i 4013 . . . . . . . . . . . . . . . 16  |-  ( pi 
<_  ( 2  x.  2 )  <->  pi  <_  4 )
4037, 39bitr2i 185 . . . . . . . . . . . . . . 15  |-  ( pi 
<_  4  <->  ( pi  / 
2 )  <_  2
)
4134, 40mpbi 145 . . . . . . . . . . . . . 14  |-  ( pi 
/  2 )  <_ 
2
42 0xr 8006 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
43 elioc2 9938 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( pi  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) ) )
4442, 27, 43mp2an 426 . . . . . . . . . . . . . 14  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) )
458, 30, 41, 44mpbir3an 1179 . . . . . . . . . . . . 13  |-  ( pi 
/  2 )  e.  ( 0 (,] 2
)
46 sin02gt0 11773 . . . . . . . . . . . . 13  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
pi  /  2 ) ) )
4745, 46ax-mp 5 . . . . . . . . . . . 12  |-  0  <  ( sin `  (
pi  /  2 ) )
4826, 47gt0ap0ii 8587 . . . . . . . . . . 11  |-  ( sin `  ( pi  /  2
) ) #  0
4915, 17, 19, 48divmulapi 8725 . . . . . . . . . 10  |-  ( ( 0  /  ( sin `  ( pi  /  2
) ) )  =  ( cos `  (
pi  /  2 ) )  <->  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) )  =  0 )
5024, 49mpbir 146 . . . . . . . . 9  |-  ( 0  /  ( sin `  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  2 ) )
5117, 48div0api 8705 . . . . . . . . 9  |-  ( 0  /  ( sin `  (
pi  /  2 ) ) )  =  0
5250, 51eqtr3i 2200 . . . . . . . 8  |-  ( cos `  ( pi  /  2
) )  =  0
5352oveq1i 5887 . . . . . . 7  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  ( 0 ^ 2 )
54 sq0 10613 . . . . . . 7  |-  ( 0 ^ 2 )  =  0
5553, 54eqtri 2198 . . . . . 6  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  0
5655oveq2i 5888 . . . . 5  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )
57 sincossq 11758 . . . . . 6  |-  ( ( pi  /  2 )  e.  CC  ->  (
( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1 )
589, 57ax-mp 5 . . . . 5  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1
5956, 58eqtr3i 2200 . . . 4  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  1
6017sqcli 10603 . . . . 5  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  e.  CC
6160addid1i 8101 . . . 4  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  ( ( sin `  (
pi  /  2 ) ) ^ 2 )
621, 59, 613eqtr2ri 2205 . . 3  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  =  ( 1 ^ 2 )
63 0re 7959 . . . . 5  |-  0  e.  RR
6463, 26, 47ltleii 8062 . . . 4  |-  0  <_  ( sin `  (
pi  /  2 ) )
65 1re 7958 . . . 4  |-  1  e.  RR
66 0le1 8440 . . . 4  |-  0  <_  1
67 sq11 10595 . . . 4  |-  ( ( ( ( sin `  (
pi  /  2 ) )  e.  RR  /\  0  <_  ( sin `  (
pi  /  2 ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( sin `  (
pi  /  2 ) )  =  1 ) )
6826, 64, 65, 66, 67mp4an 427 . . 3  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( sin `  ( pi  /  2
) )  =  1 )
6962, 68mpbi 145 . 2  |-  ( sin `  ( pi  /  2
) )  =  1
7069, 52pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818   RR*cxr 7993    < clt 7994    <_ cle 7995    / cdiv 8631   2c2 8972   4c4 8974   (,]cioc 9891   ^cexp 10521   sincsin 11654   cosccos 11655   picpi 11657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-ioc 9895  df-ico 9896  df-icc 9897  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660  df-cos 11661  df-pi 11663  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-ntr 13681  df-cn 13773  df-cnp 13774  df-tx 13838  df-cncf 14143  df-limced 14210  df-dvap 14211
This theorem is referenced by:  sinhalfpi  14302  coshalfpi  14303
  Copyright terms: Public domain W3C validator