ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef01bndlem Unicode version

Theorem ef01bndlem 12152
Description: Lemma for sin01bnd 12153 and cos01bnd 12154. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef01bndlem  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 8050 . . . . 5  |-  _i  e.  CC
2 0xr 8149 . . . . . . . 8  |-  0  e.  RR*
3 1re 8101 . . . . . . . 8  |-  1  e.  RR
4 elioc2 10088 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
52, 3, 4mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
65simp1bi 1015 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
76recnd 8131 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
8 mulcl 8082 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
91, 7, 8sylancr 414 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
10 4nn0 9344 . . . 4  |-  4  e.  NN0
11 ef01bnd.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
1211eftlcl 12084 . . . 4  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
139, 10, 12sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
1413abscld 11577 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  e.  RR )
15 reexpcl 10733 . . . 4  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
166, 10, 15sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
17 4re 9143 . . . . 5  |-  4  e.  RR
1817, 3readdcli 8115 . . . 4  |-  ( 4  +  1 )  e.  RR
19 faccl 10912 . . . . . 6  |-  ( 4  e.  NN0  ->  ( ! `
 4 )  e.  NN )
2010, 19ax-mp 5 . . . . 5  |-  ( ! `
 4 )  e.  NN
21 4nn 9230 . . . . 5  |-  4  e.  NN
2220, 21nnmulcli 9088 . . . 4  |-  ( ( ! `  4 )  x.  4 )  e.  NN
23 nndivre 9102 . . . 4  |-  ( ( ( 4  +  1 )  e.  RR  /\  ( ( ! ` 
4 )  x.  4 )  e.  NN )  ->  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  e.  RR )
2418, 22, 23mp2an 426 . . 3  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  e.  RR
25 remulcl 8083 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR )  ->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  e.  RR )
2616, 24, 25sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  e.  RR )
27 6nn 9232 . . 3  |-  6  e.  NN
28 nndivre 9102 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
2916, 27, 28sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
30 eqid 2206 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( abs `  (
_i  x.  A )
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  ( _i  x.  A ) ) ^ n )  / 
( ! `  n
) ) )
31 eqid 2206 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  (
_i  x.  A )
) ^ 4 )  /  ( ! ` 
4 ) )  x.  ( ( 1  / 
( 4  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  ( _i  x.  A ) ) ^ 4 )  / 
( ! `  4
) )  x.  (
( 1  /  (
4  +  1 ) ) ^ n ) ) )
3221a1i 9 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  NN )
33 absmul 11465 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
341, 7, 33sylancr 414 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  ( ( abs `  _i )  x.  ( abs `  A ) ) )
35 absi 11455 . . . . . . . 8  |-  ( abs `  _i )  =  1
3635oveq1i 5972 . . . . . . 7  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
375simp2bi 1016 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
386, 37elrpd 9845 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR+ )
39 rpre 9812 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
40 rpge0 9818 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  0  <_  A )
4139, 40absidd 11563 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( abs `  A )  =  A )
4238, 41syl 14 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  A )  =  A )
4342oveq2d 5978 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
4436, 43eqtrid 2251 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  _i )  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
457mulid2d 8121 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  A )  =  A )
4634, 44, 453eqtrd 2243 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  A )
475simp3bi 1017 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
4846, 47eqbrtrd 4076 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  <_ 
1 )
4911, 30, 31, 32, 9, 48eftlub 12086 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( (
( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) ) )
5046oveq1d 5977 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
_i  x.  A )
) ^ 4 )  =  ( A ^
4 ) )
5150oveq1d 5977 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) )  =  ( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) ) )
5249, 51breqtrd 4080 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) ) )
53 3pos 9160 . . . . . . . . 9  |-  0  <  3
54 0re 8102 . . . . . . . . . 10  |-  0  e.  RR
55 3re 9140 . . . . . . . . . 10  |-  3  e.  RR
56 5re 9145 . . . . . . . . . 10  |-  5  e.  RR
5754, 55, 56ltadd1i 8605 . . . . . . . . 9  |-  ( 0  <  3  <->  ( 0  +  5 )  < 
( 3  +  5 ) )
5853, 57mpbi 145 . . . . . . . 8  |-  ( 0  +  5 )  < 
( 3  +  5 )
59 5cn 9146 . . . . . . . . 9  |-  5  e.  CC
6059addlidi 8245 . . . . . . . 8  |-  ( 0  +  5 )  =  5
61 cu2 10815 . . . . . . . . 9  |-  ( 2 ^ 3 )  =  8
62 5p3e8 9214 . . . . . . . . 9  |-  ( 5  +  3 )  =  8
63 3cn 9141 . . . . . . . . . 10  |-  3  e.  CC
6459, 63addcomi 8246 . . . . . . . . 9  |-  ( 5  +  3 )  =  ( 3  +  5 )
6561, 62, 643eqtr2ri 2234 . . . . . . . 8  |-  ( 3  +  5 )  =  ( 2 ^ 3 )
6658, 60, 653brtr3i 4083 . . . . . . 7  |-  5  <  ( 2 ^ 3 )
67 2re 9136 . . . . . . . 8  |-  2  e.  RR
68 1le2 9275 . . . . . . . 8  |-  1  <_  2
69 4z 9432 . . . . . . . . 9  |-  4  e.  ZZ
70 3lt4 9239 . . . . . . . . . 10  |-  3  <  4
7155, 17, 70ltleii 8205 . . . . . . . . 9  |-  3  <_  4
72 3z 9431 . . . . . . . . . 10  |-  3  e.  ZZ
7372eluz1i 9685 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
7469, 71, 73mpbir2an 945 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
75 leexp2a 10769 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  4  e.  ( ZZ>= `  3 )
)  ->  ( 2 ^ 3 )  <_ 
( 2 ^ 4 ) )
7667, 68, 74, 75mp3an 1350 . . . . . . 7  |-  ( 2 ^ 3 )  <_ 
( 2 ^ 4 )
77 8re 9151 . . . . . . . . 9  |-  8  e.  RR
7861, 77eqeltri 2279 . . . . . . . 8  |-  ( 2 ^ 3 )  e.  RR
79 2nn 9228 . . . . . . . . . 10  |-  2  e.  NN
80 nnexpcl 10729 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  4  e.  NN0 )  -> 
( 2 ^ 4 )  e.  NN )
8179, 10, 80mp2an 426 . . . . . . . . 9  |-  ( 2 ^ 4 )  e.  NN
8281nnrei 9075 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  RR
8356, 78, 82ltletri 8209 . . . . . . 7  |-  ( ( 5  <  ( 2 ^ 3 )  /\  ( 2 ^ 3 )  <_  ( 2 ^ 4 ) )  ->  5  <  (
2 ^ 4 ) )
8466, 76, 83mp2an 426 . . . . . 6  |-  5  <  ( 2 ^ 4 )
85 6re 9147 . . . . . . . 8  |-  6  e.  RR
8685, 82remulcli 8116 . . . . . . 7  |-  ( 6  x.  ( 2 ^ 4 ) )  e.  RR
87 6pos 9167 . . . . . . . 8  |-  0  <  6
8881nngt0i 9096 . . . . . . . 8  |-  0  <  ( 2 ^ 4 )
8985, 82, 87, 88mulgt0ii 8213 . . . . . . 7  |-  0  <  ( 6  x.  (
2 ^ 4 ) )
9056, 82, 86, 89ltdiv1ii 9032 . . . . . 6  |-  ( 5  <  ( 2 ^ 4 )  <->  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) ) )
9184, 90mpbi 145 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
92 df-5 9128 . . . . . 6  |-  5  =  ( 4  +  1 )
93 df-4 9127 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
9493fveq2i 5597 . . . . . . . . . 10  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
95 3nn0 9343 . . . . . . . . . . 11  |-  3  e.  NN0
96 facp1 10907 . . . . . . . . . . 11  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
9795, 96ax-mp 5 . . . . . . . . . 10  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
98 sq2 10812 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
9998, 93eqtr2i 2228 . . . . . . . . . . 11  |-  ( 3  +  1 )  =  ( 2 ^ 2 )
10099oveq2i 5973 . . . . . . . . . 10  |-  ( ( ! `  3 )  x.  ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
10194, 97, 1003eqtri 2231 . . . . . . . . 9  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
102101oveq1i 5972 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ( ! `
 3 )  x.  ( 2 ^ 2 ) )  x.  (
2 ^ 2 ) )
10398oveq2i 5973 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
4 )  x.  4 )
104 fac3 10909 . . . . . . . . . 10  |-  ( ! `
 3 )  =  6
105 6cn 9148 . . . . . . . . . 10  |-  6  e.  CC
106104, 105eqeltri 2279 . . . . . . . . 9  |-  ( ! `
 3 )  e.  CC
10717recni 8114 . . . . . . . . . 10  |-  4  e.  CC
10898, 107eqeltri 2279 . . . . . . . . 9  |-  ( 2 ^ 2 )  e.  CC
109106, 108, 108mulassi 8111 . . . . . . . 8  |-  ( ( ( ! `  3
)  x.  ( 2 ^ 2 ) )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
110102, 103, 1093eqtr3i 2235 . . . . . . 7  |-  ( ( ! `  4 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
111 2p2e4 9193 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
112111oveq2i 5973 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( 2 ^ 4 )
113 2cn 9137 . . . . . . . . . 10  |-  2  e.  CC
114 2nn0 9342 . . . . . . . . . 10  |-  2  e.  NN0
115 expadd 10758 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
116113, 114, 114, 115mp3an 1350 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
117112, 116eqtr3i 2229 . . . . . . . 8  |-  ( 2 ^ 4 )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
118117oveq2i 5973 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
119104oveq1i 5972 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( 6  x.  (
2 ^ 4 ) )
120110, 118, 1193eqtr2ri 2234 . . . . . 6  |-  ( 6  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
4 )  x.  4 )
12192, 120oveq12i 5974 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )
12281nncni 9076 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  CC
123122mullidi 8105 . . . . . . 7  |-  ( 1  x.  ( 2 ^ 4 ) )  =  ( 2 ^ 4 )
124123oveq1i 5972 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
12582, 88gt0ap0ii 8731 . . . . . . . . 9  |-  ( 2 ^ 4 ) #  0
126122, 125dividapi 8848 . . . . . . . 8  |-  ( ( 2 ^ 4 )  /  ( 2 ^ 4 ) )  =  1
127126oveq2i 5973 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  / 
6 )  x.  1 )
128 ax-1cn 8048 . . . . . . . 8  |-  1  e.  CC
12985, 87gt0ap0ii 8731 . . . . . . . 8  |-  6 #  0
130128, 105, 122, 122, 129, 125divmuldivapi 8875 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  x.  ( 2 ^ 4 ) )  /  (
6  x.  ( 2 ^ 4 ) ) )
13185, 129rerecclapi 8880 . . . . . . . . 9  |-  ( 1  /  6 )  e.  RR
132131recni 8114 . . . . . . . 8  |-  ( 1  /  6 )  e.  CC
133132mulridi 8104 . . . . . . 7  |-  ( ( 1  /  6 )  x.  1 )  =  ( 1  /  6
)
134127, 130, 1333eqtr3i 2235 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
135124, 134eqtr3i 2229 . . . . 5  |-  ( ( 2 ^ 4 )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
13691, 121, 1353brtr3i 4083 . . . 4  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  < 
( 1  /  6
)
137 rpexpcl 10735 . . . . . 6  |-  ( ( A  e.  RR+  /\  4  e.  ZZ )  ->  ( A ^ 4 )  e.  RR+ )
13838, 69, 137sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR+ )
139 elrp 9807 . . . . . 6  |-  ( ( A ^ 4 )  e.  RR+  <->  ( ( A ^ 4 )  e.  RR  /\  0  < 
( A ^ 4 ) ) )
140 ltmul2 8959 . . . . . . 7  |-  ( ( ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR  /\  ( 1  /  6
)  e.  RR  /\  ( ( A ^
4 )  e.  RR  /\  0  <  ( A ^ 4 ) ) )  ->  ( (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
14124, 131, 140mp3an12 1340 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  0  <  ( A ^
4 ) )  -> 
( ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  <  (
1  /  6 )  <-> 
( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  / 
6 ) ) ) )
142139, 141sylbi 121 . . . . 5  |-  ( ( A ^ 4 )  e.  RR+  ->  ( ( ( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
143138, 142syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  <  ( 1  /  6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
144136, 143mpbii 148 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
14516recnd 8131 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  CC )
146 divrecap 8791 . . . . 5  |-  ( ( ( A ^ 4 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
147105, 129, 146mp3an23 1342 . . . 4  |-  ( ( A ^ 4 )  e.  CC  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
148145, 147syl 14 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
149144, 148breqtrrd 4082 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  / 
6 ) )
15014, 26, 29, 52, 149lelttrd 8227 1  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4054    |-> cmpt 4116   ` cfv 5285  (class class class)co 5962   CCcc 7953   RRcr 7954   0cc0 7955   1c1 7956   _ici 7957    + caddc 7958    x. cmul 7960   RR*cxr 8136    < clt 8137    <_ cle 8138   # cap 8684    / cdiv 8775   NNcn 9066   2c2 9117   3c3 9118   4c4 9119   5c5 9120   6c6 9121   8c8 9123   NN0cn0 9325   ZZcz 9402   ZZ>=cuz 9678   RR+crp 9805   (,]cioc 10041   ^cexp 10715   !cfa 10902   abscabs 11393   sum_csu 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-oadd 6524  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-ioc 10045  df-ico 10046  df-fz 10161  df-fzo 10295  df-seqfrec 10625  df-exp 10716  df-fac 10903  df-ihash 10953  df-shft 11211  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-sumdc 11750
This theorem is referenced by:  sin01bnd  12153  cos01bnd  12154
  Copyright terms: Public domain W3C validator