| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ef01bndlem | Unicode version | ||
| Description: Lemma for sin01bnd 12263 and cos01bnd 12264. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| ef01bnd.1 |
|
| Ref | Expression |
|---|---|
| ef01bndlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8090 |
. . . . 5
| |
| 2 | 0xr 8189 |
. . . . . . . 8
| |
| 3 | 1re 8141 |
. . . . . . . 8
| |
| 4 | elioc2 10128 |
. . . . . . . 8
| |
| 5 | 2, 3, 4 | mp2an 426 |
. . . . . . 7
|
| 6 | 5 | simp1bi 1036 |
. . . . . 6
|
| 7 | 6 | recnd 8171 |
. . . . 5
|
| 8 | mulcl 8122 |
. . . . 5
| |
| 9 | 1, 7, 8 | sylancr 414 |
. . . 4
|
| 10 | 4nn0 9384 |
. . . 4
| |
| 11 | ef01bnd.1 |
. . . . 5
| |
| 12 | 11 | eftlcl 12194 |
. . . 4
|
| 13 | 9, 10, 12 | sylancl 413 |
. . 3
|
| 14 | 13 | abscld 11687 |
. 2
|
| 15 | reexpcl 10773 |
. . . 4
| |
| 16 | 6, 10, 15 | sylancl 413 |
. . 3
|
| 17 | 4re 9183 |
. . . . 5
| |
| 18 | 17, 3 | readdcli 8155 |
. . . 4
|
| 19 | faccl 10952 |
. . . . . 6
| |
| 20 | 10, 19 | ax-mp 5 |
. . . . 5
|
| 21 | 4nn 9270 |
. . . . 5
| |
| 22 | 20, 21 | nnmulcli 9128 |
. . . 4
|
| 23 | nndivre 9142 |
. . . 4
| |
| 24 | 18, 22, 23 | mp2an 426 |
. . 3
|
| 25 | remulcl 8123 |
. . 3
| |
| 26 | 16, 24, 25 | sylancl 413 |
. 2
|
| 27 | 6nn 9272 |
. . 3
| |
| 28 | nndivre 9142 |
. . 3
| |
| 29 | 16, 27, 28 | sylancl 413 |
. 2
|
| 30 | eqid 2229 |
. . . 4
| |
| 31 | eqid 2229 |
. . . 4
| |
| 32 | 21 | a1i 9 |
. . . 4
|
| 33 | absmul 11575 |
. . . . . . 7
| |
| 34 | 1, 7, 33 | sylancr 414 |
. . . . . 6
|
| 35 | absi 11565 |
. . . . . . . 8
| |
| 36 | 35 | oveq1i 6010 |
. . . . . . 7
|
| 37 | 5 | simp2bi 1037 |
. . . . . . . . . 10
|
| 38 | 6, 37 | elrpd 9885 |
. . . . . . . . 9
|
| 39 | rpre 9852 |
. . . . . . . . . 10
| |
| 40 | rpge0 9858 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | absidd 11673 |
. . . . . . . . 9
|
| 42 | 38, 41 | syl 14 |
. . . . . . . 8
|
| 43 | 42 | oveq2d 6016 |
. . . . . . 7
|
| 44 | 36, 43 | eqtrid 2274 |
. . . . . 6
|
| 45 | 7 | mulid2d 8161 |
. . . . . 6
|
| 46 | 34, 44, 45 | 3eqtrd 2266 |
. . . . 5
|
| 47 | 5 | simp3bi 1038 |
. . . . 5
|
| 48 | 46, 47 | eqbrtrd 4104 |
. . . 4
|
| 49 | 11, 30, 31, 32, 9, 48 | eftlub 12196 |
. . 3
|
| 50 | 46 | oveq1d 6015 |
. . . 4
|
| 51 | 50 | oveq1d 6015 |
. . 3
|
| 52 | 49, 51 | breqtrd 4108 |
. 2
|
| 53 | 3pos 9200 |
. . . . . . . . 9
| |
| 54 | 0re 8142 |
. . . . . . . . . 10
| |
| 55 | 3re 9180 |
. . . . . . . . . 10
| |
| 56 | 5re 9185 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | ltadd1i 8645 |
. . . . . . . . 9
|
| 58 | 53, 57 | mpbi 145 |
. . . . . . . 8
|
| 59 | 5cn 9186 |
. . . . . . . . 9
| |
| 60 | 59 | addlidi 8285 |
. . . . . . . 8
|
| 61 | cu2 10855 |
. . . . . . . . 9
| |
| 62 | 5p3e8 9254 |
. . . . . . . . 9
| |
| 63 | 3cn 9181 |
. . . . . . . . . 10
| |
| 64 | 59, 63 | addcomi 8286 |
. . . . . . . . 9
|
| 65 | 61, 62, 64 | 3eqtr2ri 2257 |
. . . . . . . 8
|
| 66 | 58, 60, 65 | 3brtr3i 4111 |
. . . . . . 7
|
| 67 | 2re 9176 |
. . . . . . . 8
| |
| 68 | 1le2 9315 |
. . . . . . . 8
| |
| 69 | 4z 9472 |
. . . . . . . . 9
| |
| 70 | 3lt4 9279 |
. . . . . . . . . 10
| |
| 71 | 55, 17, 70 | ltleii 8245 |
. . . . . . . . 9
|
| 72 | 3z 9471 |
. . . . . . . . . 10
| |
| 73 | 72 | eluz1i 9725 |
. . . . . . . . 9
|
| 74 | 69, 71, 73 | mpbir2an 948 |
. . . . . . . 8
|
| 75 | leexp2a 10809 |
. . . . . . . 8
| |
| 76 | 67, 68, 74, 75 | mp3an 1371 |
. . . . . . 7
|
| 77 | 8re 9191 |
. . . . . . . . 9
| |
| 78 | 61, 77 | eqeltri 2302 |
. . . . . . . 8
|
| 79 | 2nn 9268 |
. . . . . . . . . 10
| |
| 80 | nnexpcl 10769 |
. . . . . . . . . 10
| |
| 81 | 79, 10, 80 | mp2an 426 |
. . . . . . . . 9
|
| 82 | 81 | nnrei 9115 |
. . . . . . . 8
|
| 83 | 56, 78, 82 | ltletri 8249 |
. . . . . . 7
|
| 84 | 66, 76, 83 | mp2an 426 |
. . . . . 6
|
| 85 | 6re 9187 |
. . . . . . . 8
| |
| 86 | 85, 82 | remulcli 8156 |
. . . . . . 7
|
| 87 | 6pos 9207 |
. . . . . . . 8
| |
| 88 | 81 | nngt0i 9136 |
. . . . . . . 8
|
| 89 | 85, 82, 87, 88 | mulgt0ii 8253 |
. . . . . . 7
|
| 90 | 56, 82, 86, 89 | ltdiv1ii 9072 |
. . . . . 6
|
| 91 | 84, 90 | mpbi 145 |
. . . . 5
|
| 92 | df-5 9168 |
. . . . . 6
| |
| 93 | df-4 9167 |
. . . . . . . . . . 11
| |
| 94 | 93 | fveq2i 5629 |
. . . . . . . . . 10
|
| 95 | 3nn0 9383 |
. . . . . . . . . . 11
| |
| 96 | facp1 10947 |
. . . . . . . . . . 11
| |
| 97 | 95, 96 | ax-mp 5 |
. . . . . . . . . 10
|
| 98 | sq2 10852 |
. . . . . . . . . . . 12
| |
| 99 | 98, 93 | eqtr2i 2251 |
. . . . . . . . . . 11
|
| 100 | 99 | oveq2i 6011 |
. . . . . . . . . 10
|
| 101 | 94, 97, 100 | 3eqtri 2254 |
. . . . . . . . 9
|
| 102 | 101 | oveq1i 6010 |
. . . . . . . 8
|
| 103 | 98 | oveq2i 6011 |
. . . . . . . 8
|
| 104 | fac3 10949 |
. . . . . . . . . 10
| |
| 105 | 6cn 9188 |
. . . . . . . . . 10
| |
| 106 | 104, 105 | eqeltri 2302 |
. . . . . . . . 9
|
| 107 | 17 | recni 8154 |
. . . . . . . . . 10
|
| 108 | 98, 107 | eqeltri 2302 |
. . . . . . . . 9
|
| 109 | 106, 108, 108 | mulassi 8151 |
. . . . . . . 8
|
| 110 | 102, 103, 109 | 3eqtr3i 2258 |
. . . . . . 7
|
| 111 | 2p2e4 9233 |
. . . . . . . . . 10
| |
| 112 | 111 | oveq2i 6011 |
. . . . . . . . 9
|
| 113 | 2cn 9177 |
. . . . . . . . . 10
| |
| 114 | 2nn0 9382 |
. . . . . . . . . 10
| |
| 115 | expadd 10798 |
. . . . . . . . . 10
| |
| 116 | 113, 114, 114, 115 | mp3an 1371 |
. . . . . . . . 9
|
| 117 | 112, 116 | eqtr3i 2252 |
. . . . . . . 8
|
| 118 | 117 | oveq2i 6011 |
. . . . . . 7
|
| 119 | 104 | oveq1i 6010 |
. . . . . . 7
|
| 120 | 110, 118, 119 | 3eqtr2ri 2257 |
. . . . . 6
|
| 121 | 92, 120 | oveq12i 6012 |
. . . . 5
|
| 122 | 81 | nncni 9116 |
. . . . . . . 8
|
| 123 | 122 | mullidi 8145 |
. . . . . . 7
|
| 124 | 123 | oveq1i 6010 |
. . . . . 6
|
| 125 | 82, 88 | gt0ap0ii 8771 |
. . . . . . . . 9
|
| 126 | 122, 125 | dividapi 8888 |
. . . . . . . 8
|
| 127 | 126 | oveq2i 6011 |
. . . . . . 7
|
| 128 | ax-1cn 8088 |
. . . . . . . 8
| |
| 129 | 85, 87 | gt0ap0ii 8771 |
. . . . . . . 8
|
| 130 | 128, 105, 122, 122, 129, 125 | divmuldivapi 8915 |
. . . . . . 7
|
| 131 | 85, 129 | rerecclapi 8920 |
. . . . . . . . 9
|
| 132 | 131 | recni 8154 |
. . . . . . . 8
|
| 133 | 132 | mulridi 8144 |
. . . . . . 7
|
| 134 | 127, 130, 133 | 3eqtr3i 2258 |
. . . . . 6
|
| 135 | 124, 134 | eqtr3i 2252 |
. . . . 5
|
| 136 | 91, 121, 135 | 3brtr3i 4111 |
. . . 4
|
| 137 | rpexpcl 10775 |
. . . . . 6
| |
| 138 | 38, 69, 137 | sylancl 413 |
. . . . 5
|
| 139 | elrp 9847 |
. . . . . 6
| |
| 140 | ltmul2 8999 |
. . . . . . 7
| |
| 141 | 24, 131, 140 | mp3an12 1361 |
. . . . . 6
|
| 142 | 139, 141 | sylbi 121 |
. . . . 5
|
| 143 | 138, 142 | syl 14 |
. . . 4
|
| 144 | 136, 143 | mpbii 148 |
. . 3
|
| 145 | 16 | recnd 8171 |
. . . 4
|
| 146 | divrecap 8831 |
. . . . 5
| |
| 147 | 105, 129, 146 | mp3an23 1363 |
. . . 4
|
| 148 | 145, 147 | syl 14 |
. . 3
|
| 149 | 144, 148 | breqtrrd 4110 |
. 2
|
| 150 | 14, 26, 29, 52, 149 | lelttrd 8267 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-ioc 10085 df-ico 10086 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: sin01bnd 12263 cos01bnd 12264 |
| Copyright terms: Public domain | W3C validator |