ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef01bndlem Unicode version

Theorem ef01bndlem 11940
Description: Lemma for sin01bnd 11941 and cos01bnd 11942. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef01bndlem  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 7993 . . . . 5  |-  _i  e.  CC
2 0xr 8092 . . . . . . . 8  |-  0  e.  RR*
3 1re 8044 . . . . . . . 8  |-  1  e.  RR
4 elioc2 10030 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
52, 3, 4mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
65simp1bi 1014 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
76recnd 8074 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
8 mulcl 8025 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
91, 7, 8sylancr 414 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
10 4nn0 9287 . . . 4  |-  4  e.  NN0
11 ef01bnd.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
1211eftlcl 11872 . . . 4  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
139, 10, 12sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
1413abscld 11365 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  e.  RR )
15 reexpcl 10667 . . . 4  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
166, 10, 15sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
17 4re 9086 . . . . 5  |-  4  e.  RR
1817, 3readdcli 8058 . . . 4  |-  ( 4  +  1 )  e.  RR
19 faccl 10846 . . . . . 6  |-  ( 4  e.  NN0  ->  ( ! `
 4 )  e.  NN )
2010, 19ax-mp 5 . . . . 5  |-  ( ! `
 4 )  e.  NN
21 4nn 9173 . . . . 5  |-  4  e.  NN
2220, 21nnmulcli 9031 . . . 4  |-  ( ( ! `  4 )  x.  4 )  e.  NN
23 nndivre 9045 . . . 4  |-  ( ( ( 4  +  1 )  e.  RR  /\  ( ( ! ` 
4 )  x.  4 )  e.  NN )  ->  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  e.  RR )
2418, 22, 23mp2an 426 . . 3  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  e.  RR
25 remulcl 8026 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR )  ->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  e.  RR )
2616, 24, 25sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  e.  RR )
27 6nn 9175 . . 3  |-  6  e.  NN
28 nndivre 9045 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
2916, 27, 28sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
30 eqid 2196 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( abs `  (
_i  x.  A )
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  ( _i  x.  A ) ) ^ n )  / 
( ! `  n
) ) )
31 eqid 2196 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  (
_i  x.  A )
) ^ 4 )  /  ( ! ` 
4 ) )  x.  ( ( 1  / 
( 4  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  ( _i  x.  A ) ) ^ 4 )  / 
( ! `  4
) )  x.  (
( 1  /  (
4  +  1 ) ) ^ n ) ) )
3221a1i 9 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  NN )
33 absmul 11253 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
341, 7, 33sylancr 414 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  ( ( abs `  _i )  x.  ( abs `  A ) ) )
35 absi 11243 . . . . . . . 8  |-  ( abs `  _i )  =  1
3635oveq1i 5935 . . . . . . 7  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
375simp2bi 1015 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
386, 37elrpd 9787 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR+ )
39 rpre 9754 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
40 rpge0 9760 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  0  <_  A )
4139, 40absidd 11351 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( abs `  A )  =  A )
4238, 41syl 14 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  A )  =  A )
4342oveq2d 5941 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
4436, 43eqtrid 2241 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  _i )  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
457mulid2d 8064 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  A )  =  A )
4634, 44, 453eqtrd 2233 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  A )
475simp3bi 1016 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
4846, 47eqbrtrd 4056 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  <_ 
1 )
4911, 30, 31, 32, 9, 48eftlub 11874 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( (
( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) ) )
5046oveq1d 5940 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
_i  x.  A )
) ^ 4 )  =  ( A ^
4 ) )
5150oveq1d 5940 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) )  =  ( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) ) )
5249, 51breqtrd 4060 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) ) )
53 3pos 9103 . . . . . . . . 9  |-  0  <  3
54 0re 8045 . . . . . . . . . 10  |-  0  e.  RR
55 3re 9083 . . . . . . . . . 10  |-  3  e.  RR
56 5re 9088 . . . . . . . . . 10  |-  5  e.  RR
5754, 55, 56ltadd1i 8548 . . . . . . . . 9  |-  ( 0  <  3  <->  ( 0  +  5 )  < 
( 3  +  5 ) )
5853, 57mpbi 145 . . . . . . . 8  |-  ( 0  +  5 )  < 
( 3  +  5 )
59 5cn 9089 . . . . . . . . 9  |-  5  e.  CC
6059addlidi 8188 . . . . . . . 8  |-  ( 0  +  5 )  =  5
61 cu2 10749 . . . . . . . . 9  |-  ( 2 ^ 3 )  =  8
62 5p3e8 9157 . . . . . . . . 9  |-  ( 5  +  3 )  =  8
63 3cn 9084 . . . . . . . . . 10  |-  3  e.  CC
6459, 63addcomi 8189 . . . . . . . . 9  |-  ( 5  +  3 )  =  ( 3  +  5 )
6561, 62, 643eqtr2ri 2224 . . . . . . . 8  |-  ( 3  +  5 )  =  ( 2 ^ 3 )
6658, 60, 653brtr3i 4063 . . . . . . 7  |-  5  <  ( 2 ^ 3 )
67 2re 9079 . . . . . . . 8  |-  2  e.  RR
68 1le2 9218 . . . . . . . 8  |-  1  <_  2
69 4z 9375 . . . . . . . . 9  |-  4  e.  ZZ
70 3lt4 9182 . . . . . . . . . 10  |-  3  <  4
7155, 17, 70ltleii 8148 . . . . . . . . 9  |-  3  <_  4
72 3z 9374 . . . . . . . . . 10  |-  3  e.  ZZ
7372eluz1i 9627 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
7469, 71, 73mpbir2an 944 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
75 leexp2a 10703 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  4  e.  ( ZZ>= `  3 )
)  ->  ( 2 ^ 3 )  <_ 
( 2 ^ 4 ) )
7667, 68, 74, 75mp3an 1348 . . . . . . 7  |-  ( 2 ^ 3 )  <_ 
( 2 ^ 4 )
77 8re 9094 . . . . . . . . 9  |-  8  e.  RR
7861, 77eqeltri 2269 . . . . . . . 8  |-  ( 2 ^ 3 )  e.  RR
79 2nn 9171 . . . . . . . . . 10  |-  2  e.  NN
80 nnexpcl 10663 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  4  e.  NN0 )  -> 
( 2 ^ 4 )  e.  NN )
8179, 10, 80mp2an 426 . . . . . . . . 9  |-  ( 2 ^ 4 )  e.  NN
8281nnrei 9018 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  RR
8356, 78, 82ltletri 8152 . . . . . . 7  |-  ( ( 5  <  ( 2 ^ 3 )  /\  ( 2 ^ 3 )  <_  ( 2 ^ 4 ) )  ->  5  <  (
2 ^ 4 ) )
8466, 76, 83mp2an 426 . . . . . 6  |-  5  <  ( 2 ^ 4 )
85 6re 9090 . . . . . . . 8  |-  6  e.  RR
8685, 82remulcli 8059 . . . . . . 7  |-  ( 6  x.  ( 2 ^ 4 ) )  e.  RR
87 6pos 9110 . . . . . . . 8  |-  0  <  6
8881nngt0i 9039 . . . . . . . 8  |-  0  <  ( 2 ^ 4 )
8985, 82, 87, 88mulgt0ii 8156 . . . . . . 7  |-  0  <  ( 6  x.  (
2 ^ 4 ) )
9056, 82, 86, 89ltdiv1ii 8975 . . . . . 6  |-  ( 5  <  ( 2 ^ 4 )  <->  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) ) )
9184, 90mpbi 145 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
92 df-5 9071 . . . . . 6  |-  5  =  ( 4  +  1 )
93 df-4 9070 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
9493fveq2i 5564 . . . . . . . . . 10  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
95 3nn0 9286 . . . . . . . . . . 11  |-  3  e.  NN0
96 facp1 10841 . . . . . . . . . . 11  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
9795, 96ax-mp 5 . . . . . . . . . 10  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
98 sq2 10746 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
9998, 93eqtr2i 2218 . . . . . . . . . . 11  |-  ( 3  +  1 )  =  ( 2 ^ 2 )
10099oveq2i 5936 . . . . . . . . . 10  |-  ( ( ! `  3 )  x.  ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
10194, 97, 1003eqtri 2221 . . . . . . . . 9  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
102101oveq1i 5935 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ( ! `
 3 )  x.  ( 2 ^ 2 ) )  x.  (
2 ^ 2 ) )
10398oveq2i 5936 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
4 )  x.  4 )
104 fac3 10843 . . . . . . . . . 10  |-  ( ! `
 3 )  =  6
105 6cn 9091 . . . . . . . . . 10  |-  6  e.  CC
106104, 105eqeltri 2269 . . . . . . . . 9  |-  ( ! `
 3 )  e.  CC
10717recni 8057 . . . . . . . . . 10  |-  4  e.  CC
10898, 107eqeltri 2269 . . . . . . . . 9  |-  ( 2 ^ 2 )  e.  CC
109106, 108, 108mulassi 8054 . . . . . . . 8  |-  ( ( ( ! `  3
)  x.  ( 2 ^ 2 ) )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
110102, 103, 1093eqtr3i 2225 . . . . . . 7  |-  ( ( ! `  4 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
111 2p2e4 9136 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
112111oveq2i 5936 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( 2 ^ 4 )
113 2cn 9080 . . . . . . . . . 10  |-  2  e.  CC
114 2nn0 9285 . . . . . . . . . 10  |-  2  e.  NN0
115 expadd 10692 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
116113, 114, 114, 115mp3an 1348 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
117112, 116eqtr3i 2219 . . . . . . . 8  |-  ( 2 ^ 4 )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
118117oveq2i 5936 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
119104oveq1i 5935 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( 6  x.  (
2 ^ 4 ) )
120110, 118, 1193eqtr2ri 2224 . . . . . 6  |-  ( 6  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
4 )  x.  4 )
12192, 120oveq12i 5937 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )
12281nncni 9019 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  CC
123122mullidi 8048 . . . . . . 7  |-  ( 1  x.  ( 2 ^ 4 ) )  =  ( 2 ^ 4 )
124123oveq1i 5935 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
12582, 88gt0ap0ii 8674 . . . . . . . . 9  |-  ( 2 ^ 4 ) #  0
126122, 125dividapi 8791 . . . . . . . 8  |-  ( ( 2 ^ 4 )  /  ( 2 ^ 4 ) )  =  1
127126oveq2i 5936 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  / 
6 )  x.  1 )
128 ax-1cn 7991 . . . . . . . 8  |-  1  e.  CC
12985, 87gt0ap0ii 8674 . . . . . . . 8  |-  6 #  0
130128, 105, 122, 122, 129, 125divmuldivapi 8818 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  x.  ( 2 ^ 4 ) )  /  (
6  x.  ( 2 ^ 4 ) ) )
13185, 129rerecclapi 8823 . . . . . . . . 9  |-  ( 1  /  6 )  e.  RR
132131recni 8057 . . . . . . . 8  |-  ( 1  /  6 )  e.  CC
133132mulridi 8047 . . . . . . 7  |-  ( ( 1  /  6 )  x.  1 )  =  ( 1  /  6
)
134127, 130, 1333eqtr3i 2225 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
135124, 134eqtr3i 2219 . . . . 5  |-  ( ( 2 ^ 4 )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
13691, 121, 1353brtr3i 4063 . . . 4  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  < 
( 1  /  6
)
137 rpexpcl 10669 . . . . . 6  |-  ( ( A  e.  RR+  /\  4  e.  ZZ )  ->  ( A ^ 4 )  e.  RR+ )
13838, 69, 137sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR+ )
139 elrp 9749 . . . . . 6  |-  ( ( A ^ 4 )  e.  RR+  <->  ( ( A ^ 4 )  e.  RR  /\  0  < 
( A ^ 4 ) ) )
140 ltmul2 8902 . . . . . . 7  |-  ( ( ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR  /\  ( 1  /  6
)  e.  RR  /\  ( ( A ^
4 )  e.  RR  /\  0  <  ( A ^ 4 ) ) )  ->  ( (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
14124, 131, 140mp3an12 1338 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  0  <  ( A ^
4 ) )  -> 
( ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  <  (
1  /  6 )  <-> 
( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  / 
6 ) ) ) )
142139, 141sylbi 121 . . . . 5  |-  ( ( A ^ 4 )  e.  RR+  ->  ( ( ( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
143138, 142syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  <  ( 1  /  6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
144136, 143mpbii 148 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
14516recnd 8074 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  CC )
146 divrecap 8734 . . . . 5  |-  ( ( ( A ^ 4 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
147105, 129, 146mp3an23 1340 . . . 4  |-  ( ( A ^ 4 )  e.  CC  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
148145, 147syl 14 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
149144, 148breqtrrd 4062 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  / 
6 ) )
15014, 26, 29, 52, 149lelttrd 8170 1  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899   _ici 7900    + caddc 7901    x. cmul 7903   RR*cxr 8079    < clt 8080    <_ cle 8081   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   3c3 9061   4c4 9062   5c5 9063   6c6 9064   8c8 9066   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   RR+crp 9747   (,]cioc 9983   ^cexp 10649   !cfa 10836   abscabs 11181   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ioc 9987  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  sin01bnd  11941  cos01bnd  11942
  Copyright terms: Public domain W3C validator