| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ef01bndlem | Unicode version | ||
| Description: Lemma for sin01bnd 12153 and cos01bnd 12154. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| ef01bnd.1 |
|
| Ref | Expression |
|---|---|
| ef01bndlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8050 |
. . . . 5
| |
| 2 | 0xr 8149 |
. . . . . . . 8
| |
| 3 | 1re 8101 |
. . . . . . . 8
| |
| 4 | elioc2 10088 |
. . . . . . . 8
| |
| 5 | 2, 3, 4 | mp2an 426 |
. . . . . . 7
|
| 6 | 5 | simp1bi 1015 |
. . . . . 6
|
| 7 | 6 | recnd 8131 |
. . . . 5
|
| 8 | mulcl 8082 |
. . . . 5
| |
| 9 | 1, 7, 8 | sylancr 414 |
. . . 4
|
| 10 | 4nn0 9344 |
. . . 4
| |
| 11 | ef01bnd.1 |
. . . . 5
| |
| 12 | 11 | eftlcl 12084 |
. . . 4
|
| 13 | 9, 10, 12 | sylancl 413 |
. . 3
|
| 14 | 13 | abscld 11577 |
. 2
|
| 15 | reexpcl 10733 |
. . . 4
| |
| 16 | 6, 10, 15 | sylancl 413 |
. . 3
|
| 17 | 4re 9143 |
. . . . 5
| |
| 18 | 17, 3 | readdcli 8115 |
. . . 4
|
| 19 | faccl 10912 |
. . . . . 6
| |
| 20 | 10, 19 | ax-mp 5 |
. . . . 5
|
| 21 | 4nn 9230 |
. . . . 5
| |
| 22 | 20, 21 | nnmulcli 9088 |
. . . 4
|
| 23 | nndivre 9102 |
. . . 4
| |
| 24 | 18, 22, 23 | mp2an 426 |
. . 3
|
| 25 | remulcl 8083 |
. . 3
| |
| 26 | 16, 24, 25 | sylancl 413 |
. 2
|
| 27 | 6nn 9232 |
. . 3
| |
| 28 | nndivre 9102 |
. . 3
| |
| 29 | 16, 27, 28 | sylancl 413 |
. 2
|
| 30 | eqid 2206 |
. . . 4
| |
| 31 | eqid 2206 |
. . . 4
| |
| 32 | 21 | a1i 9 |
. . . 4
|
| 33 | absmul 11465 |
. . . . . . 7
| |
| 34 | 1, 7, 33 | sylancr 414 |
. . . . . 6
|
| 35 | absi 11455 |
. . . . . . . 8
| |
| 36 | 35 | oveq1i 5972 |
. . . . . . 7
|
| 37 | 5 | simp2bi 1016 |
. . . . . . . . . 10
|
| 38 | 6, 37 | elrpd 9845 |
. . . . . . . . 9
|
| 39 | rpre 9812 |
. . . . . . . . . 10
| |
| 40 | rpge0 9818 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | absidd 11563 |
. . . . . . . . 9
|
| 42 | 38, 41 | syl 14 |
. . . . . . . 8
|
| 43 | 42 | oveq2d 5978 |
. . . . . . 7
|
| 44 | 36, 43 | eqtrid 2251 |
. . . . . 6
|
| 45 | 7 | mulid2d 8121 |
. . . . . 6
|
| 46 | 34, 44, 45 | 3eqtrd 2243 |
. . . . 5
|
| 47 | 5 | simp3bi 1017 |
. . . . 5
|
| 48 | 46, 47 | eqbrtrd 4076 |
. . . 4
|
| 49 | 11, 30, 31, 32, 9, 48 | eftlub 12086 |
. . 3
|
| 50 | 46 | oveq1d 5977 |
. . . 4
|
| 51 | 50 | oveq1d 5977 |
. . 3
|
| 52 | 49, 51 | breqtrd 4080 |
. 2
|
| 53 | 3pos 9160 |
. . . . . . . . 9
| |
| 54 | 0re 8102 |
. . . . . . . . . 10
| |
| 55 | 3re 9140 |
. . . . . . . . . 10
| |
| 56 | 5re 9145 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | ltadd1i 8605 |
. . . . . . . . 9
|
| 58 | 53, 57 | mpbi 145 |
. . . . . . . 8
|
| 59 | 5cn 9146 |
. . . . . . . . 9
| |
| 60 | 59 | addlidi 8245 |
. . . . . . . 8
|
| 61 | cu2 10815 |
. . . . . . . . 9
| |
| 62 | 5p3e8 9214 |
. . . . . . . . 9
| |
| 63 | 3cn 9141 |
. . . . . . . . . 10
| |
| 64 | 59, 63 | addcomi 8246 |
. . . . . . . . 9
|
| 65 | 61, 62, 64 | 3eqtr2ri 2234 |
. . . . . . . 8
|
| 66 | 58, 60, 65 | 3brtr3i 4083 |
. . . . . . 7
|
| 67 | 2re 9136 |
. . . . . . . 8
| |
| 68 | 1le2 9275 |
. . . . . . . 8
| |
| 69 | 4z 9432 |
. . . . . . . . 9
| |
| 70 | 3lt4 9239 |
. . . . . . . . . 10
| |
| 71 | 55, 17, 70 | ltleii 8205 |
. . . . . . . . 9
|
| 72 | 3z 9431 |
. . . . . . . . . 10
| |
| 73 | 72 | eluz1i 9685 |
. . . . . . . . 9
|
| 74 | 69, 71, 73 | mpbir2an 945 |
. . . . . . . 8
|
| 75 | leexp2a 10769 |
. . . . . . . 8
| |
| 76 | 67, 68, 74, 75 | mp3an 1350 |
. . . . . . 7
|
| 77 | 8re 9151 |
. . . . . . . . 9
| |
| 78 | 61, 77 | eqeltri 2279 |
. . . . . . . 8
|
| 79 | 2nn 9228 |
. . . . . . . . . 10
| |
| 80 | nnexpcl 10729 |
. . . . . . . . . 10
| |
| 81 | 79, 10, 80 | mp2an 426 |
. . . . . . . . 9
|
| 82 | 81 | nnrei 9075 |
. . . . . . . 8
|
| 83 | 56, 78, 82 | ltletri 8209 |
. . . . . . 7
|
| 84 | 66, 76, 83 | mp2an 426 |
. . . . . 6
|
| 85 | 6re 9147 |
. . . . . . . 8
| |
| 86 | 85, 82 | remulcli 8116 |
. . . . . . 7
|
| 87 | 6pos 9167 |
. . . . . . . 8
| |
| 88 | 81 | nngt0i 9096 |
. . . . . . . 8
|
| 89 | 85, 82, 87, 88 | mulgt0ii 8213 |
. . . . . . 7
|
| 90 | 56, 82, 86, 89 | ltdiv1ii 9032 |
. . . . . 6
|
| 91 | 84, 90 | mpbi 145 |
. . . . 5
|
| 92 | df-5 9128 |
. . . . . 6
| |
| 93 | df-4 9127 |
. . . . . . . . . . 11
| |
| 94 | 93 | fveq2i 5597 |
. . . . . . . . . 10
|
| 95 | 3nn0 9343 |
. . . . . . . . . . 11
| |
| 96 | facp1 10907 |
. . . . . . . . . . 11
| |
| 97 | 95, 96 | ax-mp 5 |
. . . . . . . . . 10
|
| 98 | sq2 10812 |
. . . . . . . . . . . 12
| |
| 99 | 98, 93 | eqtr2i 2228 |
. . . . . . . . . . 11
|
| 100 | 99 | oveq2i 5973 |
. . . . . . . . . 10
|
| 101 | 94, 97, 100 | 3eqtri 2231 |
. . . . . . . . 9
|
| 102 | 101 | oveq1i 5972 |
. . . . . . . 8
|
| 103 | 98 | oveq2i 5973 |
. . . . . . . 8
|
| 104 | fac3 10909 |
. . . . . . . . . 10
| |
| 105 | 6cn 9148 |
. . . . . . . . . 10
| |
| 106 | 104, 105 | eqeltri 2279 |
. . . . . . . . 9
|
| 107 | 17 | recni 8114 |
. . . . . . . . . 10
|
| 108 | 98, 107 | eqeltri 2279 |
. . . . . . . . 9
|
| 109 | 106, 108, 108 | mulassi 8111 |
. . . . . . . 8
|
| 110 | 102, 103, 109 | 3eqtr3i 2235 |
. . . . . . 7
|
| 111 | 2p2e4 9193 |
. . . . . . . . . 10
| |
| 112 | 111 | oveq2i 5973 |
. . . . . . . . 9
|
| 113 | 2cn 9137 |
. . . . . . . . . 10
| |
| 114 | 2nn0 9342 |
. . . . . . . . . 10
| |
| 115 | expadd 10758 |
. . . . . . . . . 10
| |
| 116 | 113, 114, 114, 115 | mp3an 1350 |
. . . . . . . . 9
|
| 117 | 112, 116 | eqtr3i 2229 |
. . . . . . . 8
|
| 118 | 117 | oveq2i 5973 |
. . . . . . 7
|
| 119 | 104 | oveq1i 5972 |
. . . . . . 7
|
| 120 | 110, 118, 119 | 3eqtr2ri 2234 |
. . . . . 6
|
| 121 | 92, 120 | oveq12i 5974 |
. . . . 5
|
| 122 | 81 | nncni 9076 |
. . . . . . . 8
|
| 123 | 122 | mullidi 8105 |
. . . . . . 7
|
| 124 | 123 | oveq1i 5972 |
. . . . . 6
|
| 125 | 82, 88 | gt0ap0ii 8731 |
. . . . . . . . 9
|
| 126 | 122, 125 | dividapi 8848 |
. . . . . . . 8
|
| 127 | 126 | oveq2i 5973 |
. . . . . . 7
|
| 128 | ax-1cn 8048 |
. . . . . . . 8
| |
| 129 | 85, 87 | gt0ap0ii 8731 |
. . . . . . . 8
|
| 130 | 128, 105, 122, 122, 129, 125 | divmuldivapi 8875 |
. . . . . . 7
|
| 131 | 85, 129 | rerecclapi 8880 |
. . . . . . . . 9
|
| 132 | 131 | recni 8114 |
. . . . . . . 8
|
| 133 | 132 | mulridi 8104 |
. . . . . . 7
|
| 134 | 127, 130, 133 | 3eqtr3i 2235 |
. . . . . 6
|
| 135 | 124, 134 | eqtr3i 2229 |
. . . . 5
|
| 136 | 91, 121, 135 | 3brtr3i 4083 |
. . . 4
|
| 137 | rpexpcl 10735 |
. . . . . 6
| |
| 138 | 38, 69, 137 | sylancl 413 |
. . . . 5
|
| 139 | elrp 9807 |
. . . . . 6
| |
| 140 | ltmul2 8959 |
. . . . . . 7
| |
| 141 | 24, 131, 140 | mp3an12 1340 |
. . . . . 6
|
| 142 | 139, 141 | sylbi 121 |
. . . . 5
|
| 143 | 138, 142 | syl 14 |
. . . 4
|
| 144 | 136, 143 | mpbii 148 |
. . 3
|
| 145 | 16 | recnd 8131 |
. . . 4
|
| 146 | divrecap 8791 |
. . . . 5
| |
| 147 | 105, 129, 146 | mp3an23 1342 |
. . . 4
|
| 148 | 145, 147 | syl 14 |
. . 3
|
| 149 | 144, 148 | breqtrrd 4082 |
. 2
|
| 150 | 14, 26, 29, 52, 149 | lelttrd 8227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-ioc 10045 df-ico 10046 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-fac 10903 df-ihash 10953 df-shft 11211 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 |
| This theorem is referenced by: sin01bnd 12153 cos01bnd 12154 |
| Copyright terms: Public domain | W3C validator |