ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef01bndlem Unicode version

Theorem ef01bndlem 11899
Description: Lemma for sin01bnd 11900 and cos01bnd 11901. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef01bndlem  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Distinct variable groups:    k, n, A   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 7967 . . . . 5  |-  _i  e.  CC
2 0xr 8066 . . . . . . . 8  |-  0  e.  RR*
3 1re 8018 . . . . . . . 8  |-  1  e.  RR
4 elioc2 10002 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
52, 3, 4mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
65simp1bi 1014 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
76recnd 8048 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
8 mulcl 7999 . . . . 5  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
91, 7, 8sylancr 414 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
10 4nn0 9259 . . . 4  |-  4  e.  NN0
11 ef01bnd.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
1211eftlcl 11831 . . . 4  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
139, 10, 12sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
1413abscld 11325 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  e.  RR )
15 reexpcl 10627 . . . 4  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
166, 10, 15sylancl 413 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
17 4re 9059 . . . . 5  |-  4  e.  RR
1817, 3readdcli 8032 . . . 4  |-  ( 4  +  1 )  e.  RR
19 faccl 10806 . . . . . 6  |-  ( 4  e.  NN0  ->  ( ! `
 4 )  e.  NN )
2010, 19ax-mp 5 . . . . 5  |-  ( ! `
 4 )  e.  NN
21 4nn 9145 . . . . 5  |-  4  e.  NN
2220, 21nnmulcli 9004 . . . 4  |-  ( ( ! `  4 )  x.  4 )  e.  NN
23 nndivre 9018 . . . 4  |-  ( ( ( 4  +  1 )  e.  RR  /\  ( ( ! ` 
4 )  x.  4 )  e.  NN )  ->  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  e.  RR )
2418, 22, 23mp2an 426 . . 3  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  e.  RR
25 remulcl 8000 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR )  ->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  e.  RR )
2616, 24, 25sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  e.  RR )
27 6nn 9147 . . 3  |-  6  e.  NN
28 nndivre 9018 . . 3  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
2916, 27, 28sylancl 413 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
30 eqid 2193 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( abs `  (
_i  x.  A )
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  ( _i  x.  A ) ) ^ n )  / 
( ! `  n
) ) )
31 eqid 2193 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  (
_i  x.  A )
) ^ 4 )  /  ( ! ` 
4 ) )  x.  ( ( 1  / 
( 4  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  ( _i  x.  A ) ) ^ 4 )  / 
( ! `  4
) )  x.  (
( 1  /  (
4  +  1 ) ) ^ n ) ) )
3221a1i 9 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  NN )
33 absmul 11213 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
341, 7, 33sylancr 414 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  ( ( abs `  _i )  x.  ( abs `  A ) ) )
35 absi 11203 . . . . . . . 8  |-  ( abs `  _i )  =  1
3635oveq1i 5928 . . . . . . 7  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
375simp2bi 1015 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
386, 37elrpd 9759 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR+ )
39 rpre 9726 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
40 rpge0 9732 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  0  <_  A )
4139, 40absidd 11311 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( abs `  A )  =  A )
4238, 41syl 14 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  A )  =  A )
4342oveq2d 5934 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
4436, 43eqtrid 2238 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  _i )  x.  ( abs `  A ) )  =  ( 1  x.  A
) )
457mulid2d 8038 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  x.  A )  =  A )
4634, 44, 453eqtrd 2230 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  =  A )
475simp3bi 1016 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
4846, 47eqbrtrd 4051 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( _i  x.  A ) )  <_ 
1 )
4911, 30, 31, 32, 9, 48eftlub 11833 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( (
( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) ) )
5046oveq1d 5933 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
_i  x.  A )
) ^ 4 )  =  ( A ^
4 ) )
5150oveq1d 5933 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( abs `  (
_i  x.  A )
) ^ 4 )  x.  ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) ) )  =  ( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) ) )
5249, 51breqtrd 4055 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <_  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) ) )
53 3pos 9076 . . . . . . . . 9  |-  0  <  3
54 0re 8019 . . . . . . . . . 10  |-  0  e.  RR
55 3re 9056 . . . . . . . . . 10  |-  3  e.  RR
56 5re 9061 . . . . . . . . . 10  |-  5  e.  RR
5754, 55, 56ltadd1i 8521 . . . . . . . . 9  |-  ( 0  <  3  <->  ( 0  +  5 )  < 
( 3  +  5 ) )
5853, 57mpbi 145 . . . . . . . 8  |-  ( 0  +  5 )  < 
( 3  +  5 )
59 5cn 9062 . . . . . . . . 9  |-  5  e.  CC
6059addid2i 8162 . . . . . . . 8  |-  ( 0  +  5 )  =  5
61 cu2 10709 . . . . . . . . 9  |-  ( 2 ^ 3 )  =  8
62 5p3e8 9129 . . . . . . . . 9  |-  ( 5  +  3 )  =  8
63 3cn 9057 . . . . . . . . . 10  |-  3  e.  CC
6459, 63addcomi 8163 . . . . . . . . 9  |-  ( 5  +  3 )  =  ( 3  +  5 )
6561, 62, 643eqtr2ri 2221 . . . . . . . 8  |-  ( 3  +  5 )  =  ( 2 ^ 3 )
6658, 60, 653brtr3i 4058 . . . . . . 7  |-  5  <  ( 2 ^ 3 )
67 2re 9052 . . . . . . . 8  |-  2  e.  RR
68 1le2 9190 . . . . . . . 8  |-  1  <_  2
69 4z 9347 . . . . . . . . 9  |-  4  e.  ZZ
70 3lt4 9154 . . . . . . . . . 10  |-  3  <  4
7155, 17, 70ltleii 8122 . . . . . . . . 9  |-  3  <_  4
72 3z 9346 . . . . . . . . . 10  |-  3  e.  ZZ
7372eluz1i 9599 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
7469, 71, 73mpbir2an 944 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
75 leexp2a 10663 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  4  e.  ( ZZ>= `  3 )
)  ->  ( 2 ^ 3 )  <_ 
( 2 ^ 4 ) )
7667, 68, 74, 75mp3an 1348 . . . . . . 7  |-  ( 2 ^ 3 )  <_ 
( 2 ^ 4 )
77 8re 9067 . . . . . . . . 9  |-  8  e.  RR
7861, 77eqeltri 2266 . . . . . . . 8  |-  ( 2 ^ 3 )  e.  RR
79 2nn 9143 . . . . . . . . . 10  |-  2  e.  NN
80 nnexpcl 10623 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  4  e.  NN0 )  -> 
( 2 ^ 4 )  e.  NN )
8179, 10, 80mp2an 426 . . . . . . . . 9  |-  ( 2 ^ 4 )  e.  NN
8281nnrei 8991 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  RR
8356, 78, 82ltletri 8126 . . . . . . 7  |-  ( ( 5  <  ( 2 ^ 3 )  /\  ( 2 ^ 3 )  <_  ( 2 ^ 4 ) )  ->  5  <  (
2 ^ 4 ) )
8466, 76, 83mp2an 426 . . . . . 6  |-  5  <  ( 2 ^ 4 )
85 6re 9063 . . . . . . . 8  |-  6  e.  RR
8685, 82remulcli 8033 . . . . . . 7  |-  ( 6  x.  ( 2 ^ 4 ) )  e.  RR
87 6pos 9083 . . . . . . . 8  |-  0  <  6
8881nngt0i 9012 . . . . . . . 8  |-  0  <  ( 2 ^ 4 )
8985, 82, 87, 88mulgt0ii 8130 . . . . . . 7  |-  0  <  ( 6  x.  (
2 ^ 4 ) )
9056, 82, 86, 89ltdiv1ii 8948 . . . . . 6  |-  ( 5  <  ( 2 ^ 4 )  <->  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) ) )
9184, 90mpbi 145 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  < 
( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
92 df-5 9044 . . . . . 6  |-  5  =  ( 4  +  1 )
93 df-4 9043 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
9493fveq2i 5557 . . . . . . . . . 10  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
95 3nn0 9258 . . . . . . . . . . 11  |-  3  e.  NN0
96 facp1 10801 . . . . . . . . . . 11  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
9795, 96ax-mp 5 . . . . . . . . . 10  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
98 sq2 10706 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
9998, 93eqtr2i 2215 . . . . . . . . . . 11  |-  ( 3  +  1 )  =  ( 2 ^ 2 )
10099oveq2i 5929 . . . . . . . . . 10  |-  ( ( ! `  3 )  x.  ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
10194, 97, 1003eqtri 2218 . . . . . . . . 9  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  (
2 ^ 2 ) )
102101oveq1i 5928 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ( ! `
 3 )  x.  ( 2 ^ 2 ) )  x.  (
2 ^ 2 ) )
10398oveq2i 5929 . . . . . . . 8  |-  ( ( ! `  4 )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
4 )  x.  4 )
104 fac3 10803 . . . . . . . . . 10  |-  ( ! `
 3 )  =  6
105 6cn 9064 . . . . . . . . . 10  |-  6  e.  CC
106104, 105eqeltri 2266 . . . . . . . . 9  |-  ( ! `
 3 )  e.  CC
10717recni 8031 . . . . . . . . . 10  |-  4  e.  CC
10898, 107eqeltri 2266 . . . . . . . . 9  |-  ( 2 ^ 2 )  e.  CC
109106, 108, 108mulassi 8028 . . . . . . . 8  |-  ( ( ( ! `  3
)  x.  ( 2 ^ 2 ) )  x.  ( 2 ^ 2 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
110102, 103, 1093eqtr3i 2222 . . . . . . 7  |-  ( ( ! `  4 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
111 2p2e4 9109 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
112111oveq2i 5929 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( 2 ^ 4 )
113 2cn 9053 . . . . . . . . . 10  |-  2  e.  CC
114 2nn0 9257 . . . . . . . . . 10  |-  2  e.  NN0
115 expadd 10652 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
116113, 114, 114, 115mp3an 1348 . . . . . . . . 9  |-  ( 2 ^ ( 2  +  2 ) )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
117112, 116eqtr3i 2216 . . . . . . . 8  |-  ( 2 ^ 4 )  =  ( ( 2 ^ 2 )  x.  (
2 ^ 2 ) )
118117oveq2i 5929 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
3 )  x.  (
( 2 ^ 2 )  x.  ( 2 ^ 2 ) ) )
119104oveq1i 5928 . . . . . . 7  |-  ( ( ! `  3 )  x.  ( 2 ^ 4 ) )  =  ( 6  x.  (
2 ^ 4 ) )
120110, 118, 1193eqtr2ri 2221 . . . . . 6  |-  ( 6  x.  ( 2 ^ 4 ) )  =  ( ( ! ` 
4 )  x.  4 )
12192, 120oveq12i 5930 . . . . 5  |-  ( 5  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )
12281nncni 8992 . . . . . . . 8  |-  ( 2 ^ 4 )  e.  CC
123122mullidi 8022 . . . . . . 7  |-  ( 1  x.  ( 2 ^ 4 ) )  =  ( 2 ^ 4 )
124123oveq1i 5928 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( ( 2 ^ 4 )  /  (
6  x.  ( 2 ^ 4 ) ) )
12582, 88gt0ap0ii 8647 . . . . . . . . 9  |-  ( 2 ^ 4 ) #  0
126122, 125dividapi 8764 . . . . . . . 8  |-  ( ( 2 ^ 4 )  /  ( 2 ^ 4 ) )  =  1
127126oveq2i 5929 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  / 
6 )  x.  1 )
128 ax-1cn 7965 . . . . . . . 8  |-  1  e.  CC
12985, 87gt0ap0ii 8647 . . . . . . . 8  |-  6 #  0
130128, 105, 122, 122, 129, 125divmuldivapi 8791 . . . . . . 7  |-  ( ( 1  /  6 )  x.  ( ( 2 ^ 4 )  / 
( 2 ^ 4 ) ) )  =  ( ( 1  x.  ( 2 ^ 4 ) )  /  (
6  x.  ( 2 ^ 4 ) ) )
13185, 129rerecclapi 8796 . . . . . . . . 9  |-  ( 1  /  6 )  e.  RR
132131recni 8031 . . . . . . . 8  |-  ( 1  /  6 )  e.  CC
133132mulid1i 8021 . . . . . . 7  |-  ( ( 1  /  6 )  x.  1 )  =  ( 1  /  6
)
134127, 130, 1333eqtr3i 2222 . . . . . 6  |-  ( ( 1  x.  ( 2 ^ 4 ) )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
135124, 134eqtr3i 2216 . . . . 5  |-  ( ( 2 ^ 4 )  /  ( 6  x.  ( 2 ^ 4 ) ) )  =  ( 1  /  6
)
13691, 121, 1353brtr3i 4058 . . . 4  |-  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) )  < 
( 1  /  6
)
137 rpexpcl 10629 . . . . . 6  |-  ( ( A  e.  RR+  /\  4  e.  ZZ )  ->  ( A ^ 4 )  e.  RR+ )
13838, 69, 137sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR+ )
139 elrp 9721 . . . . . 6  |-  ( ( A ^ 4 )  e.  RR+  <->  ( ( A ^ 4 )  e.  RR  /\  0  < 
( A ^ 4 ) ) )
140 ltmul2 8875 . . . . . . 7  |-  ( ( ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  e.  RR  /\  ( 1  /  6
)  e.  RR  /\  ( ( A ^
4 )  e.  RR  /\  0  <  ( A ^ 4 ) ) )  ->  ( (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
14124, 131, 140mp3an12 1338 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  0  <  ( A ^
4 ) )  -> 
( ( ( 4  +  1 )  / 
( ( ! ` 
4 )  x.  4 ) )  <  (
1  /  6 )  <-> 
( ( A ^
4 )  x.  (
( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  / 
6 ) ) ) )
142139, 141sylbi 121 . . . . 5  |-  ( ( A ^ 4 )  e.  RR+  ->  ( ( ( 4  +  1 )  /  ( ( ! `  4 )  x.  4 ) )  <  ( 1  / 
6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
143138, 142syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) )  <  ( 1  /  6 )  <->  ( ( A ^ 4 )  x.  ( ( 4  +  1 )  /  (
( ! `  4
)  x.  4 ) ) )  <  (
( A ^ 4 )  x.  ( 1  /  6 ) ) ) )
144136, 143mpbii 148 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
14516recnd 8048 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  CC )
146 divrecap 8707 . . . . 5  |-  ( ( ( A ^ 4 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
147105, 129, 146mp3an23 1340 . . . 4  |-  ( ( A ^ 4 )  e.  CC  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
148145, 147syl 14 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  =  ( ( A ^ 4 )  x.  ( 1  /  6
) ) )
149144, 148breqtrrd 4057 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  x.  ( ( 4  +  1 )  /  ( ( ! `
 4 )  x.  4 ) ) )  <  ( ( A ^ 4 )  / 
6 ) )
15014, 26, 29, 52, 149lelttrd 8144 1  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) )  <  ( ( A ^ 4 )  /  6 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873   _ici 7874    + caddc 7875    x. cmul 7877   RR*cxr 8053    < clt 8054    <_ cle 8055   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   3c3 9034   4c4 9035   5c5 9036   6c6 9037   8c8 9039   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   (,]cioc 9955   ^cexp 10609   !cfa 10796   abscabs 11141   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ioc 9959  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  sin01bnd  11900  cos01bnd  11901
  Copyright terms: Public domain W3C validator