ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeeanv Unicode version

Theorem eeeanv 1931
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eeeanv  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Distinct variable groups:    ph, y    ph, z    x, z, ps    x, y, ch
Allowed substitution hints:    ph( x)    ps( y)    ch( z)

Proof of Theorem eeeanv
StepHypRef Expression
1 df-3an 980 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
213exbii 1605 . 2  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  E. x E. y E. z ( ( ph  /\  ps )  /\  ch ) )
3 eeanv 1930 . . 3  |-  ( E. y E. z ( ( ph  /\  ps )  /\  ch )  <->  ( E. y ( ph  /\  ps )  /\  E. z ch ) )
43exbii 1603 . 2  |-  ( E. x E. y E. z ( ( ph  /\ 
ps )  /\  ch ) 
<->  E. x ( E. y ( ph  /\  ps )  /\  E. z ch ) )
5 eeanv 1930 . . . 4  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
65anbi1i 458 . . 3  |-  ( ( E. x E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( ( E. x ph  /\ 
E. y ps )  /\  E. z ch )
)
7 19.41v 1900 . . 3  |-  ( E. x ( E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( E. x E. y
( ph  /\  ps )  /\  E. z ch )
)
8 df-3an 980 . . 3  |-  ( ( E. x ph  /\  E. y ps  /\  E. z ch )  <->  ( ( E. x ph  /\  E. y ps )  /\  E. z ch ) )
96, 7, 83bitr4i 212 . 2  |-  ( E. x ( E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
102, 4, 93bitri 206 1  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978   E.wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-17 1524  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1459
This theorem is referenced by:  vtocl3  2791  spc3egv  2827  spc3gv  2828  eloprabga  5952  prarloc  7477
  Copyright terms: Public domain W3C validator