| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovdi | Unicode version | ||
| Description: Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6794 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| ecovdi.1 |
|
| ecovdi.2 |
|
| ecovdi.3 |
|
| ecovdi.4 |
|
| ecovdi.5 |
|
| ecovdi.6 |
|
| ecovdi.7 |
|
| ecovdi.8 |
|
| ecovdi.9 |
|
| ecovdi.10 |
|
| ecovdi.11 |
|
| Ref | Expression |
|---|---|
| ecovdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovdi.1 |
. 2
| |
| 2 | oveq1 6008 |
. . 3
| |
| 3 | oveq1 6008 |
. . . 4
| |
| 4 | oveq1 6008 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 6019 |
. . 3
|
| 6 | 2, 5 | eqeq12d 2244 |
. 2
|
| 7 | oveq1 6008 |
. . . 4
| |
| 8 | 7 | oveq2d 6017 |
. . 3
|
| 9 | oveq2 6009 |
. . . 4
| |
| 10 | 9 | oveq1d 6016 |
. . 3
|
| 11 | 8, 10 | eqeq12d 2244 |
. 2
|
| 12 | oveq2 6009 |
. . . 4
| |
| 13 | 12 | oveq2d 6017 |
. . 3
|
| 14 | oveq2 6009 |
. . . 4
| |
| 15 | 14 | oveq2d 6017 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2244 |
. 2
|
| 17 | ecovdi.10 |
. . . 4
| |
| 18 | ecovdi.11 |
. . . 4
| |
| 19 | opeq12 3859 |
. . . . 5
| |
| 20 | 19 | eceq1d 6716 |
. . . 4
|
| 21 | 17, 18, 20 | mp2an 426 |
. . 3
|
| 22 | ecovdi.2 |
. . . . . . 7
| |
| 23 | 22 | oveq2d 6017 |
. . . . . 6
|
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | ecovdi.7 |
. . . . . 6
| |
| 26 | ecovdi.3 |
. . . . . 6
| |
| 27 | 25, 26 | sylan2 286 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2262 |
. . . 4
|
| 29 | 28 | 3impb 1223 |
. . 3
|
| 30 | ecovdi.4 |
. . . . . 6
| |
| 31 | ecovdi.5 |
. . . . . 6
| |
| 32 | 30, 31 | oveqan12d 6020 |
. . . . 5
|
| 33 | ecovdi.8 |
. . . . . 6
| |
| 34 | ecovdi.9 |
. . . . . 6
| |
| 35 | ecovdi.6 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 289 |
. . . . 5
|
| 37 | 32, 36 | eqtrd 2262 |
. . . 4
|
| 38 | 37 | 3impdi 1327 |
. . 3
|
| 39 | 21, 29, 38 | 3eqtr4a 2288 |
. 2
|
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 6771 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fv 5326 df-ov 6004 df-ec 6682 df-qs 6686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |