Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecovidi | Unicode version |
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.) |
Ref | Expression |
---|---|
ecovidi.1 | |
ecovidi.2 | |
ecovidi.3 | |
ecovidi.4 | |
ecovidi.5 | |
ecovidi.6 | |
ecovidi.7 | |
ecovidi.8 | |
ecovidi.9 | |
ecovidi.10 | |
ecovidi.11 |
Ref | Expression |
---|---|
ecovidi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovidi.1 | . 2 | |
2 | oveq1 5849 | . . 3 | |
3 | oveq1 5849 | . . . 4 | |
4 | oveq1 5849 | . . . 4 | |
5 | 3, 4 | oveq12d 5860 | . . 3 |
6 | 2, 5 | eqeq12d 2180 | . 2 |
7 | oveq1 5849 | . . . 4 | |
8 | 7 | oveq2d 5858 | . . 3 |
9 | oveq2 5850 | . . . 4 | |
10 | 9 | oveq1d 5857 | . . 3 |
11 | 8, 10 | eqeq12d 2180 | . 2 |
12 | oveq2 5850 | . . . 4 | |
13 | 12 | oveq2d 5858 | . . 3 |
14 | oveq2 5850 | . . . 4 | |
15 | 14 | oveq2d 5858 | . . 3 |
16 | 13, 15 | eqeq12d 2180 | . 2 |
17 | ecovidi.10 | . . . 4 | |
18 | ecovidi.11 | . . . 4 | |
19 | opeq12 3760 | . . . . 5 | |
20 | 19 | eceq1d 6537 | . . . 4 |
21 | 17, 18, 20 | syl2anc 409 | . . 3 |
22 | ecovidi.2 | . . . . . . 7 | |
23 | 22 | oveq2d 5858 | . . . . . 6 |
24 | 23 | adantl 275 | . . . . 5 |
25 | ecovidi.7 | . . . . . 6 | |
26 | ecovidi.3 | . . . . . 6 | |
27 | 25, 26 | sylan2 284 | . . . . 5 |
28 | 24, 27 | eqtrd 2198 | . . . 4 |
29 | 28 | 3impb 1189 | . . 3 |
30 | ecovidi.4 | . . . . . 6 | |
31 | ecovidi.5 | . . . . . 6 | |
32 | 30, 31 | oveqan12d 5861 | . . . . 5 |
33 | ecovidi.8 | . . . . . 6 | |
34 | ecovidi.9 | . . . . . 6 | |
35 | ecovidi.6 | . . . . . 6 | |
36 | 33, 34, 35 | syl2an 287 | . . . . 5 |
37 | 32, 36 | eqtrd 2198 | . . . 4 |
38 | 37 | 3impdi 1283 | . . 3 |
39 | 21, 29, 38 | 3eqtr4d 2208 | . 2 |
40 | 1, 6, 11, 16, 39 | 3ecoptocl 6590 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cop 3579 cxp 4602 (class class class)co 5842 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fv 5196 df-ov 5845 df-ec 6503 df-qs 6507 |
This theorem is referenced by: distrnqg 7328 distrsrg 7700 axdistr 7815 |
Copyright terms: Public domain | W3C validator |