| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovidi | Unicode version | ||
| Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| ecovidi.1 |
|
| ecovidi.2 |
|
| ecovidi.3 |
|
| ecovidi.4 |
|
| ecovidi.5 |
|
| ecovidi.6 |
|
| ecovidi.7 |
|
| ecovidi.8 |
|
| ecovidi.9 |
|
| ecovidi.10 |
|
| ecovidi.11 |
|
| Ref | Expression |
|---|---|
| ecovidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovidi.1 |
. 2
| |
| 2 | oveq1 5951 |
. . 3
| |
| 3 | oveq1 5951 |
. . . 4
| |
| 4 | oveq1 5951 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5962 |
. . 3
|
| 6 | 2, 5 | eqeq12d 2220 |
. 2
|
| 7 | oveq1 5951 |
. . . 4
| |
| 8 | 7 | oveq2d 5960 |
. . 3
|
| 9 | oveq2 5952 |
. . . 4
| |
| 10 | 9 | oveq1d 5959 |
. . 3
|
| 11 | 8, 10 | eqeq12d 2220 |
. 2
|
| 12 | oveq2 5952 |
. . . 4
| |
| 13 | 12 | oveq2d 5960 |
. . 3
|
| 14 | oveq2 5952 |
. . . 4
| |
| 15 | 14 | oveq2d 5960 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2220 |
. 2
|
| 17 | ecovidi.10 |
. . . 4
| |
| 18 | ecovidi.11 |
. . . 4
| |
| 19 | opeq12 3821 |
. . . . 5
| |
| 20 | 19 | eceq1d 6656 |
. . . 4
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . 3
|
| 22 | ecovidi.2 |
. . . . . . 7
| |
| 23 | 22 | oveq2d 5960 |
. . . . . 6
|
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | ecovidi.7 |
. . . . . 6
| |
| 26 | ecovidi.3 |
. . . . . 6
| |
| 27 | 25, 26 | sylan2 286 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2238 |
. . . 4
|
| 29 | 28 | 3impb 1202 |
. . 3
|
| 30 | ecovidi.4 |
. . . . . 6
| |
| 31 | ecovidi.5 |
. . . . . 6
| |
| 32 | 30, 31 | oveqan12d 5963 |
. . . . 5
|
| 33 | ecovidi.8 |
. . . . . 6
| |
| 34 | ecovidi.9 |
. . . . . 6
| |
| 35 | ecovidi.6 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 289 |
. . . . 5
|
| 37 | 32, 36 | eqtrd 2238 |
. . . 4
|
| 38 | 37 | 3impdi 1306 |
. . 3
|
| 39 | 21, 29, 38 | 3eqtr4d 2248 |
. 2
|
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 6711 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fv 5279 df-ov 5947 df-ec 6622 df-qs 6626 |
| This theorem is referenced by: distrnqg 7500 distrsrg 7872 axdistr 7987 |
| Copyright terms: Public domain | W3C validator |