| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovidi | Unicode version | ||
| Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| ecovidi.1 |
|
| ecovidi.2 |
|
| ecovidi.3 |
|
| ecovidi.4 |
|
| ecovidi.5 |
|
| ecovidi.6 |
|
| ecovidi.7 |
|
| ecovidi.8 |
|
| ecovidi.9 |
|
| ecovidi.10 |
|
| ecovidi.11 |
|
| Ref | Expression |
|---|---|
| ecovidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovidi.1 |
. 2
| |
| 2 | oveq1 5974 |
. . 3
| |
| 3 | oveq1 5974 |
. . . 4
| |
| 4 | oveq1 5974 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5985 |
. . 3
|
| 6 | 2, 5 | eqeq12d 2222 |
. 2
|
| 7 | oveq1 5974 |
. . . 4
| |
| 8 | 7 | oveq2d 5983 |
. . 3
|
| 9 | oveq2 5975 |
. . . 4
| |
| 10 | 9 | oveq1d 5982 |
. . 3
|
| 11 | 8, 10 | eqeq12d 2222 |
. 2
|
| 12 | oveq2 5975 |
. . . 4
| |
| 13 | 12 | oveq2d 5983 |
. . 3
|
| 14 | oveq2 5975 |
. . . 4
| |
| 15 | 14 | oveq2d 5983 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2222 |
. 2
|
| 17 | ecovidi.10 |
. . . 4
| |
| 18 | ecovidi.11 |
. . . 4
| |
| 19 | opeq12 3835 |
. . . . 5
| |
| 20 | 19 | eceq1d 6679 |
. . . 4
|
| 21 | 17, 18, 20 | syl2anc 411 |
. . 3
|
| 22 | ecovidi.2 |
. . . . . . 7
| |
| 23 | 22 | oveq2d 5983 |
. . . . . 6
|
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | ecovidi.7 |
. . . . . 6
| |
| 26 | ecovidi.3 |
. . . . . 6
| |
| 27 | 25, 26 | sylan2 286 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2240 |
. . . 4
|
| 29 | 28 | 3impb 1202 |
. . 3
|
| 30 | ecovidi.4 |
. . . . . 6
| |
| 31 | ecovidi.5 |
. . . . . 6
| |
| 32 | 30, 31 | oveqan12d 5986 |
. . . . 5
|
| 33 | ecovidi.8 |
. . . . . 6
| |
| 34 | ecovidi.9 |
. . . . . 6
| |
| 35 | ecovidi.6 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 289 |
. . . . 5
|
| 37 | 32, 36 | eqtrd 2240 |
. . . 4
|
| 38 | 37 | 3impdi 1306 |
. . 3
|
| 39 | 21, 29, 38 | 3eqtr4d 2250 |
. 2
|
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 6734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fv 5298 df-ov 5970 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: distrnqg 7535 distrsrg 7907 axdistr 8022 |
| Copyright terms: Public domain | W3C validator |