Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecovidi | Unicode version |
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.) |
Ref | Expression |
---|---|
ecovidi.1 | |
ecovidi.2 | |
ecovidi.3 | |
ecovidi.4 | |
ecovidi.5 | |
ecovidi.6 | |
ecovidi.7 | |
ecovidi.8 | |
ecovidi.9 | |
ecovidi.10 | |
ecovidi.11 |
Ref | Expression |
---|---|
ecovidi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovidi.1 | . 2 | |
2 | oveq1 5860 | . . 3 | |
3 | oveq1 5860 | . . . 4 | |
4 | oveq1 5860 | . . . 4 | |
5 | 3, 4 | oveq12d 5871 | . . 3 |
6 | 2, 5 | eqeq12d 2185 | . 2 |
7 | oveq1 5860 | . . . 4 | |
8 | 7 | oveq2d 5869 | . . 3 |
9 | oveq2 5861 | . . . 4 | |
10 | 9 | oveq1d 5868 | . . 3 |
11 | 8, 10 | eqeq12d 2185 | . 2 |
12 | oveq2 5861 | . . . 4 | |
13 | 12 | oveq2d 5869 | . . 3 |
14 | oveq2 5861 | . . . 4 | |
15 | 14 | oveq2d 5869 | . . 3 |
16 | 13, 15 | eqeq12d 2185 | . 2 |
17 | ecovidi.10 | . . . 4 | |
18 | ecovidi.11 | . . . 4 | |
19 | opeq12 3767 | . . . . 5 | |
20 | 19 | eceq1d 6549 | . . . 4 |
21 | 17, 18, 20 | syl2anc 409 | . . 3 |
22 | ecovidi.2 | . . . . . . 7 | |
23 | 22 | oveq2d 5869 | . . . . . 6 |
24 | 23 | adantl 275 | . . . . 5 |
25 | ecovidi.7 | . . . . . 6 | |
26 | ecovidi.3 | . . . . . 6 | |
27 | 25, 26 | sylan2 284 | . . . . 5 |
28 | 24, 27 | eqtrd 2203 | . . . 4 |
29 | 28 | 3impb 1194 | . . 3 |
30 | ecovidi.4 | . . . . . 6 | |
31 | ecovidi.5 | . . . . . 6 | |
32 | 30, 31 | oveqan12d 5872 | . . . . 5 |
33 | ecovidi.8 | . . . . . 6 | |
34 | ecovidi.9 | . . . . . 6 | |
35 | ecovidi.6 | . . . . . 6 | |
36 | 33, 34, 35 | syl2an 287 | . . . . 5 |
37 | 32, 36 | eqtrd 2203 | . . . 4 |
38 | 37 | 3impdi 1288 | . . 3 |
39 | 21, 29, 38 | 3eqtr4d 2213 | . 2 |
40 | 1, 6, 11, 16, 39 | 3ecoptocl 6602 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cop 3586 cxp 4609 (class class class)co 5853 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fv 5206 df-ov 5856 df-ec 6515 df-qs 6519 |
This theorem is referenced by: distrnqg 7349 distrsrg 7721 axdistr 7836 |
Copyright terms: Public domain | W3C validator |