| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltadd | Unicode version | ||
| Description: Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 8061 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axltadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltadd 8061 |
. 2
| |
| 2 | ltxrlt 8158 |
. . 3
| |
| 3 | 2 | 3adant3 1020 |
. 2
|
| 4 | readdcl 8071 |
. . . . 5
| |
| 5 | readdcl 8071 |
. . . . 5
| |
| 6 | ltxrlt 8158 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2an 289 |
. . . 4
|
| 8 | 7 | 3impdi 1306 |
. . 3
|
| 9 | 8 | 3coml 1213 |
. 2
|
| 10 | 1, 3, 9 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-addrcl 8042 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-pnf 8129 df-mnf 8130 df-ltxr 8132 |
| This theorem is referenced by: ltadd2 8512 nnge1 9079 ltoddhalfle 12279 |
| Copyright terms: Public domain | W3C validator |