| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltadd | Unicode version | ||
| Description: Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 8023 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axltadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltadd 8023 |
. 2
| |
| 2 | ltxrlt 8120 |
. . 3
| |
| 3 | 2 | 3adant3 1019 |
. 2
|
| 4 | readdcl 8033 |
. . . . 5
| |
| 5 | readdcl 8033 |
. . . . 5
| |
| 6 | ltxrlt 8120 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2an 289 |
. . . 4
|
| 8 | 7 | 3impdi 1305 |
. . 3
|
| 9 | 8 | 3coml 1212 |
. 2
|
| 10 | 1, 3, 9 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-addrcl 8004 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-pnf 8091 df-mnf 8092 df-ltxr 8094 |
| This theorem is referenced by: ltadd2 8474 nnge1 9041 ltoddhalfle 12123 |
| Copyright terms: Public domain | W3C validator |