ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec Unicode version

Theorem mulcanenq0ec 7221
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )

Proof of Theorem mulcanenq0ec
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7211 . . 3  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  -> ~Q0  Er  ( om  X.  N. ) )
3 pinn 7085 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
433ad2ant1 987 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  A  e.  om )
5 simp2 967 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  B  e.  om )
6 pinn 7085 . . . . 5  |-  ( C  e.  N.  ->  C  e.  om )
763ad2ant3 989 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  C  e.  om )
8 nnmcom 6353 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
98adantl 275 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om )
)  ->  ( x  .o  y )  =  ( y  .o  x ) )
10 nnmass 6351 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
1110adantl 275 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om  /\  z  e.  om )
)  ->  ( (
x  .o  y )  .o  z )  =  ( x  .o  (
y  .o  z ) ) )
124, 5, 7, 9, 11caov32d 5919 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) )
13 nnmcl 6345 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
143, 13sylan 281 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
15 mulpiord 7093 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
16 mulclpi 7104 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
1715, 16eqeltrrd 2195 . . . . . . 7  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .o  C
)  e.  N. )
1814, 17anim12i 336 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  C )  e.  N. ) )
19 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  A  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2019an4s 562 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2118, 20jca 304 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( (
( A  .o  B
)  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
22213impdi 1256 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
23 enq0breq 7212 . . . 4  |-  ( ( ( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( <. ( A  .o  B ) ,  ( A  .o  C ) >. ~Q0 
<. B ,  C >.  <->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) ) )
2422, 23syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  ( <. ( A  .o  B
) ,  ( A  .o  C ) >. ~Q0  <. B ,  C >. 
<->  ( ( A  .o  B )  .o  C
)  =  ( ( A  .o  C )  .o  B ) ) )
2512, 24mpbird 166 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  <. ( A  .o  B ) ,  ( A  .o  C
) >. ~Q0  <. B ,  C >. )
262, 25erthi 6443 1  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   <.cop 3500   class class class wbr 3899   omcom 4474    X. cxp 4507  (class class class)co 5742    .o comu 6279    Er wer 6394   [cec 6395   N.cnpi 7048    .N cmi 7050   ~Q0 ceq0 7062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-ni 7080  df-mi 7082  df-enq0 7200
This theorem is referenced by:  nnanq0  7234  distrnq0  7235
  Copyright terms: Public domain W3C validator