ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec Unicode version

Theorem mulcanenq0ec 7457
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )

Proof of Theorem mulcanenq0ec
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7447 . . 3  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  -> ~Q0  Er  ( om  X.  N. ) )
3 pinn 7321 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
433ad2ant1 1019 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  A  e.  om )
5 simp2 999 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  B  e.  om )
6 pinn 7321 . . . . 5  |-  ( C  e.  N.  ->  C  e.  om )
763ad2ant3 1021 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  C  e.  om )
8 nnmcom 6503 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
98adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om )
)  ->  ( x  .o  y )  =  ( y  .o  x ) )
10 nnmass 6501 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
1110adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om  /\  z  e.  om )
)  ->  ( (
x  .o  y )  .o  z )  =  ( x  .o  (
y  .o  z ) ) )
124, 5, 7, 9, 11caov32d 6068 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) )
13 nnmcl 6495 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
143, 13sylan 283 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
15 mulpiord 7329 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
16 mulclpi 7340 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
1715, 16eqeltrrd 2265 . . . . . . 7  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .o  C
)  e.  N. )
1814, 17anim12i 338 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  C )  e.  N. ) )
19 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  A  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2019an4s 588 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2118, 20jca 306 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( (
( A  .o  B
)  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
22213impdi 1303 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
23 enq0breq 7448 . . . 4  |-  ( ( ( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( <. ( A  .o  B ) ,  ( A  .o  C ) >. ~Q0 
<. B ,  C >.  <->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) ) )
2422, 23syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  ( <. ( A  .o  B
) ,  ( A  .o  C ) >. ~Q0  <. B ,  C >. 
<->  ( ( A  .o  B )  .o  C
)  =  ( ( A  .o  C )  .o  B ) ) )
2512, 24mpbird 167 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  <. ( A  .o  B ) ,  ( A  .o  C
) >. ~Q0  <. B ,  C >. )
262, 25erthi 6594 1  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   <.cop 3607   class class class wbr 4015   omcom 4601    X. cxp 4636  (class class class)co 5888    .o comu 6428    Er wer 6545   [cec 6546   N.cnpi 7284    .N cmi 7286   ~Q0 ceq0 7298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-ni 7316  df-mi 7318  df-enq0 7436
This theorem is referenced by:  nnanq0  7470  distrnq0  7471
  Copyright terms: Public domain W3C validator