ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec Unicode version

Theorem mulcanenq0ec 7529
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )

Proof of Theorem mulcanenq0ec
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7519 . . 3  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  -> ~Q0  Er  ( om  X.  N. ) )
3 pinn 7393 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
433ad2ant1 1020 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  A  e.  om )
5 simp2 1000 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  B  e.  om )
6 pinn 7393 . . . . 5  |-  ( C  e.  N.  ->  C  e.  om )
763ad2ant3 1022 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  C  e.  om )
8 nnmcom 6556 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
98adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om )
)  ->  ( x  .o  y )  =  ( y  .o  x ) )
10 nnmass 6554 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
1110adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om  /\  z  e.  om )
)  ->  ( (
x  .o  y )  .o  z )  =  ( x  .o  (
y  .o  z ) ) )
124, 5, 7, 9, 11caov32d 6108 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) )
13 nnmcl 6548 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
143, 13sylan 283 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
15 mulpiord 7401 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
16 mulclpi 7412 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
1715, 16eqeltrrd 2274 . . . . . . 7  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .o  C
)  e.  N. )
1814, 17anim12i 338 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  C )  e.  N. ) )
19 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  A  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2019an4s 588 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2118, 20jca 306 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( (
( A  .o  B
)  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
22213impdi 1304 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
23 enq0breq 7520 . . . 4  |-  ( ( ( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( <. ( A  .o  B ) ,  ( A  .o  C ) >. ~Q0 
<. B ,  C >.  <->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) ) )
2422, 23syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  ( <. ( A  .o  B
) ,  ( A  .o  C ) >. ~Q0  <. B ,  C >. 
<->  ( ( A  .o  B )  .o  C
)  =  ( ( A  .o  C )  .o  B ) ) )
2512, 24mpbird 167 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  <. ( A  .o  B ) ,  ( A  .o  C
) >. ~Q0  <. B ,  C >. )
262, 25erthi 6649 1  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3626   class class class wbr 4034   omcom 4627    X. cxp 4662  (class class class)co 5925    .o comu 6481    Er wer 6598   [cec 6599   N.cnpi 7356    .N cmi 7358   ~Q0 ceq0 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-ni 7388  df-mi 7390  df-enq0 7508
This theorem is referenced by:  nnanq0  7542  distrnq0  7543
  Copyright terms: Public domain W3C validator