ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec Unicode version

Theorem mulcanenq0ec 7464
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )

Proof of Theorem mulcanenq0ec
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7454 . . 3  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  -> ~Q0  Er  ( om  X.  N. ) )
3 pinn 7328 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
433ad2ant1 1020 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  A  e.  om )
5 simp2 1000 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  B  e.  om )
6 pinn 7328 . . . . 5  |-  ( C  e.  N.  ->  C  e.  om )
763ad2ant3 1022 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  C  e.  om )
8 nnmcom 6509 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
98adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om )
)  ->  ( x  .o  y )  =  ( y  .o  x ) )
10 nnmass 6507 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
1110adantl 277 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  /\  ( x  e.  om  /\  y  e.  om  /\  z  e.  om )
)  ->  ( (
x  .o  y )  .o  z )  =  ( x  .o  (
y  .o  z ) ) )
124, 5, 7, 9, 11caov32d 6073 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) )
13 nnmcl 6501 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
143, 13sylan 283 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
15 mulpiord 7336 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
16 mulclpi 7347 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
1715, 16eqeltrrd 2267 . . . . . . 7  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .o  C
)  e.  N. )
1814, 17anim12i 338 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  C )  e.  N. ) )
19 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  A  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2019an4s 588 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( B  e.  om  /\  C  e. 
N. ) )
2118, 20jca 306 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  om )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( (
( A  .o  B
)  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
22213impdi 1304 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  (
( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
) )
23 enq0breq 7455 . . . 4  |-  ( ( ( ( A  .o  B )  e.  om  /\  ( A  .o  C
)  e.  N. )  /\  ( B  e.  om  /\  C  e.  N. )
)  ->  ( <. ( A  .o  B ) ,  ( A  .o  C ) >. ~Q0 
<. B ,  C >.  <->  (
( A  .o  B
)  .o  C )  =  ( ( A  .o  C )  .o  B ) ) )
2422, 23syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  ( <. ( A  .o  B
) ,  ( A  .o  C ) >. ~Q0  <. B ,  C >. 
<->  ( ( A  .o  B )  .o  C
)  =  ( ( A  .o  C )  .o  B ) ) )
2512, 24mpbird 167 . 2  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  <. ( A  .o  B ) ,  ( A  .o  C
) >. ~Q0  <. B ,  C >. )
262, 25erthi 6600 1  |-  ( ( A  e.  N.  /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018   omcom 4604    X. cxp 4639  (class class class)co 5892    .o comu 6434    Er wer 6551   [cec 6552   N.cnpi 7291    .N cmi 7293   ~Q0 ceq0 7305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-oadd 6440  df-omul 6441  df-er 6554  df-ec 6556  df-ni 7323  df-mi 7325  df-enq0 7443
This theorem is referenced by:  nnanq0  7477  distrnq0  7478
  Copyright terms: Public domain W3C validator