Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  triap Unicode version

Theorem triap 16170
Description: Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
Assertion
Ref Expression
triap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  <-> DECID  A #  B )
)

Proof of Theorem triap
StepHypRef Expression
1 ltap 8741 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B #  A )
213expia 1208 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  B #  A ) )
3 recn 8093 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8093 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
5 apsym 8714 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )
63, 4, 5syl2an 289 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  B #  A
) )
72, 6sylibrd 169 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A #  B ) )
8 orc 714 . . . . 5  |-  ( A #  B  ->  ( A #  B  \/  -.  A #  B ) )
9 df-dc 837 . . . . 5  |-  (DECID  A #  B  <->  ( A #  B  \/  -.  A #  B ) )
108, 9sylibr 134 . . . 4  |-  ( A #  B  -> DECID  A #  B )
117, 10syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A #  B ) )
12 apti 8730 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
133, 4, 12syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B )
)
14 olc 713 . . . . 5  |-  ( -.  A #  B  ->  ( A #  B  \/  -.  A #  B ) )
1514, 9sylibr 134 . . . 4  |-  ( -.  A #  B  -> DECID  A #  B )
1613, 15biimtrdi 163 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A #  B ) )
17 ltap 8741 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  B  <  A )  ->  A #  B )
1817, 10syl 14 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  B  <  A )  -> DECID  A #  B )
19183expia 1208 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  -> DECID  A #  B ) )
2019ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A #  B ) )
2111, 16, 203jaod 1317 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A #  B )
)
22 reaplt 8696 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
23 orc 714 . . . . . . 7  |-  ( A  <  B  ->  ( A  <  B  \/  A  =  B ) )
2423orim1i 762 . . . . . 6  |-  ( ( A  <  B  \/  B  <  A )  -> 
( ( A  < 
B  \/  A  =  B )  \/  B  <  A ) )
25 df-3or 982 . . . . . 6  |-  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <->  ( ( A  <  B  \/  A  =  B )  \/  B  <  A ) )
2624, 25sylibr 134 . . . . 5  |-  ( ( A  <  B  \/  B  <  A )  -> 
( A  <  B  \/  A  =  B  \/  B  <  A ) )
2722, 26biimtrdi 163 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  -> 
( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
28 3mix2 1170 . . . . 5  |-  ( A  =  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2913, 28biimtrrdi 164 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
3027, 29jaod 719 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A #  B  \/  -.  A #  B )  ->  ( A  < 
B  \/  A  =  B  \/  B  < 
A ) ) )
319, 30biimtrid 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (DECID  A #  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
3221, 31impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  <-> DECID  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   CCcc 7958   RRcr 7959    < clt 8142   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  reap0  16199  cndcap  16200
  Copyright terms: Public domain W3C validator