Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  triap Unicode version

Theorem triap 15673
Description: Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
Assertion
Ref Expression
triap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  <-> DECID  A #  B )
)

Proof of Theorem triap
StepHypRef Expression
1 ltap 8660 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B #  A )
213expia 1207 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  B #  A ) )
3 recn 8012 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8012 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
5 apsym 8633 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )
63, 4, 5syl2an 289 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  B #  A
) )
72, 6sylibrd 169 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A #  B ) )
8 orc 713 . . . . 5  |-  ( A #  B  ->  ( A #  B  \/  -.  A #  B ) )
9 df-dc 836 . . . . 5  |-  (DECID  A #  B  <->  ( A #  B  \/  -.  A #  B ) )
108, 9sylibr 134 . . . 4  |-  ( A #  B  -> DECID  A #  B )
117, 10syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A #  B ) )
12 apti 8649 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
133, 4, 12syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B )
)
14 olc 712 . . . . 5  |-  ( -.  A #  B  ->  ( A #  B  \/  -.  A #  B ) )
1514, 9sylibr 134 . . . 4  |-  ( -.  A #  B  -> DECID  A #  B )
1613, 15biimtrdi 163 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A #  B ) )
17 ltap 8660 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  B  <  A )  ->  A #  B )
1817, 10syl 14 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  B  <  A )  -> DECID  A #  B )
19183expia 1207 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  -> DECID  A #  B ) )
2019ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A #  B ) )
2111, 16, 203jaod 1315 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A #  B )
)
22 reaplt 8615 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
23 orc 713 . . . . . . 7  |-  ( A  <  B  ->  ( A  <  B  \/  A  =  B ) )
2423orim1i 761 . . . . . 6  |-  ( ( A  <  B  \/  B  <  A )  -> 
( ( A  < 
B  \/  A  =  B )  \/  B  <  A ) )
25 df-3or 981 . . . . . 6  |-  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <->  ( ( A  <  B  \/  A  =  B )  \/  B  <  A ) )
2624, 25sylibr 134 . . . . 5  |-  ( ( A  <  B  \/  B  <  A )  -> 
( A  <  B  \/  A  =  B  \/  B  <  A ) )
2722, 26biimtrdi 163 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  -> 
( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
28 3mix2 1169 . . . . 5  |-  ( A  =  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2913, 28biimtrrdi 164 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
3027, 29jaod 718 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A #  B  \/  -.  A #  B )  ->  ( A  < 
B  \/  A  =  B  \/  B  < 
A ) ) )
319, 30biimtrid 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (DECID  A #  B  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) ) )
3221, 31impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  <-> DECID  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   CCcc 7877   RRcr 7878    < clt 8061   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  reap0  15702  cndcap  15703
  Copyright terms: Public domain W3C validator