ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0le2is012 Unicode version

Theorem nn0le2is012 9366
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
nn0le2is012  |-  ( ( N  e.  NN0  /\  N  <_  2 )  -> 
( N  =  0  \/  N  =  1  \/  N  =  2 ) )

Proof of Theorem nn0le2is012
StepHypRef Expression
1 nn0z 9304 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 2z 9312 . . . 4  |-  2  e.  ZZ
3 zleloe 9331 . . . 4  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  <_  2  <->  ( N  <  2  \/  N  =  2 ) ) )
41, 2, 3sylancl 413 . . 3  |-  ( N  e.  NN0  ->  ( N  <_  2  <->  ( N  <  2  \/  N  =  2 ) ) )
5 zltlem1 9341 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
61, 2, 5sylancl 413 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
7 2m1e1 9068 . . . . . . . . . 10  |-  ( 2  -  1 )  =  1
87a1i 9 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  -  1 )  =  1 )
98breq2d 4030 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  <_  ( 2  -  1 )  <->  N  <_  1 ) )
106, 9bitrd 188 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  1 ) )
11 1z 9310 . . . . . . . . 9  |-  1  e.  ZZ
12 zleloe 9331 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  ->  ( N  <_  1  <->  ( N  <  1  \/  N  =  1 ) ) )
131, 11, 12sylancl 413 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  <_  1  <->  ( N  <  1  \/  N  =  1 ) ) )
14 nn0lt10b 9364 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  = 
0 ) )
15 3mix1 1168 . . . . . . . . . . . 12  |-  ( N  =  0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
1614, 15biimtrdi 163 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  <  1  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
1716com12 30 . . . . . . . . . 10  |-  ( N  <  1  ->  ( N  e.  NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
18 3mix2 1169 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
1918a1d 22 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  e.  NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2017, 19jaoi 717 . . . . . . . . 9  |-  ( ( N  <  1  \/  N  =  1 )  ->  ( N  e. 
NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2120com12 30 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  <  1  \/  N  =  1 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2213, 21sylbid 150 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <_  1  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2310, 22sylbid 150 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  <  2  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2423com12 30 . . . . 5  |-  ( N  <  2  ->  ( N  e.  NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
25 3mix3 1170 . . . . . 6  |-  ( N  =  2  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
2625a1d 22 . . . . 5  |-  ( N  =  2  ->  ( N  e.  NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2724, 26jaoi 717 . . . 4  |-  ( ( N  <  2  \/  N  =  2 )  ->  ( N  e. 
NN0  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
2827com12 30 . . 3  |-  ( N  e.  NN0  ->  ( ( N  <  2  \/  N  =  2 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
294, 28sylbid 150 . 2  |-  ( N  e.  NN0  ->  ( N  <_  2  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) ) )
3029imp 124 1  |-  ( ( N  e.  NN0  /\  N  <_  2 )  -> 
( N  =  0  \/  N  =  1  \/  N  =  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   0cc0 7842   1c1 7843    < clt 8023    <_ cle 8024    - cmin 8159   2c2 9001   NN0cn0 9207   ZZcz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285
This theorem is referenced by:  xnn0le2is012  9898
  Copyright terms: Public domain W3C validator