ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 Unicode version

Theorem nn01to3 9555
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 988 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  1  <_  N )
2 simp1 987 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  NN0 )
3 1z 9217 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 9211 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9238 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 411 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
72, 6syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
81, 7mpbid 146 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <  N  \/  1  =  N )
)
9 1nn0 9130 . . . . . . . . . . 11  |-  1  e.  NN0
10 nn0ltp1le 9253 . . . . . . . . . . 11  |-  ( ( 1  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
119, 10mpan 421 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
12 df-2 8916 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
1312breq1i 3989 . . . . . . . . . 10  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
1411, 13bitr4di 197 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  2  <_  N ) )
15 2z 9219 . . . . . . . . . 10  |-  2  e.  ZZ
16 zleloe 9238 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1715, 4, 16sylancr 411 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1814, 17bitrd 187 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1918orbi1d 781 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  <->  ( ( 2  <  N  \/  2  =  N
)  \/  1  =  N ) ) )
202, 19syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  <  N  \/  1  =  N
)  <->  ( ( 2  <  N  \/  2  =  N )  \/  1  =  N ) ) )
218, 20mpbid 146 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 2  <  N  \/  2  =  N
)  \/  1  =  N ) )
2221orcomd 719 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  <  N  \/  2  =  N
) ) )
23 orcom 718 . . . . 5  |-  ( ( 2  <  N  \/  2  =  N )  <->  ( 2  =  N  \/  2  <  N ) )
2423orbi2i 752 . . . 4  |-  ( ( 1  =  N  \/  ( 2  <  N  \/  2  =  N
) )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2522, 24sylib 121 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  =  N  \/  2  <  N
) ) )
26 3orass 971 . . 3  |-  ( ( 1  =  N  \/  2  =  N  \/  2  <  N )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2725, 26sylibr 133 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  2  =  N  \/  2  <  N ) )
28 3mix1 1156 . . . . 5  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
2928eqcoms 2168 . . . 4  |-  ( 1  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3029a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
31 3mix2 1157 . . . . 5  |-  ( N  =  2  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3231eqcoms 2168 . . . 4  |-  ( 2  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3332a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
34 simp3 989 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
3534biantrurd 303 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
3  <_  N  <->  ( N  <_  3  /\  3  <_  N ) ) )
36 2nn0 9131 . . . . . . . 8  |-  2  e.  NN0
37 nn0ltp1le 9253 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
3836, 37mpan 421 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
39 df-3 8917 . . . . . . . 8  |-  3  =  ( 2  +  1 )
4039breq1i 3989 . . . . . . 7  |-  ( 3  <_  N  <->  ( 2  +  1 )  <_  N )
4138, 40bitr4di 197 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  3  <_  N ) )
422, 41syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  3  <_  N ) )
432nn0red 9168 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
44 3re 8931 . . . . . 6  |-  3  e.  RR
45 letri3 7979 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR )  ->  ( N  =  3  <-> 
( N  <_  3  /\  3  <_  N ) ) )
4643, 44, 45sylancl 410 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  3  <->  ( N  <_  3  /\  3  <_  N ) ) )
4735, 42, 463bitr4d 219 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  N  = 
3 ) )
48 3mix3 1158 . . . 4  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
4947, 48syl6bi 162 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5030, 33, 493jaod 1294 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  =  N  \/  2  =  N  \/  2  <  N
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5127, 50mpd 13 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    \/ w3o 967    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934   2c2 8908   3c3 8909   NN0cn0 9114   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-3 8917  df-n0 9115  df-z 9192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator