ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 Unicode version

Theorem nn01to3 9576
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 993 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  1  <_  N )
2 simp1 992 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  NN0 )
3 1z 9238 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 9232 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9259 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 412 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
72, 6syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
81, 7mpbid 146 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <  N  \/  1  =  N )
)
9 1nn0 9151 . . . . . . . . . . 11  |-  1  e.  NN0
10 nn0ltp1le 9274 . . . . . . . . . . 11  |-  ( ( 1  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
119, 10mpan 422 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
12 df-2 8937 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
1312breq1i 3996 . . . . . . . . . 10  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
1411, 13bitr4di 197 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  2  <_  N ) )
15 2z 9240 . . . . . . . . . 10  |-  2  e.  ZZ
16 zleloe 9259 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1715, 4, 16sylancr 412 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1814, 17bitrd 187 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1918orbi1d 786 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  <->  ( ( 2  <  N  \/  2  =  N
)  \/  1  =  N ) ) )
202, 19syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  <  N  \/  1  =  N
)  <->  ( ( 2  <  N  \/  2  =  N )  \/  1  =  N ) ) )
218, 20mpbid 146 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 2  <  N  \/  2  =  N
)  \/  1  =  N ) )
2221orcomd 724 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  <  N  \/  2  =  N
) ) )
23 orcom 723 . . . . 5  |-  ( ( 2  <  N  \/  2  =  N )  <->  ( 2  =  N  \/  2  <  N ) )
2423orbi2i 757 . . . 4  |-  ( ( 1  =  N  \/  ( 2  <  N  \/  2  =  N
) )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2522, 24sylib 121 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  =  N  \/  2  <  N
) ) )
26 3orass 976 . . 3  |-  ( ( 1  =  N  \/  2  =  N  \/  2  <  N )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2725, 26sylibr 133 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  2  =  N  \/  2  <  N ) )
28 3mix1 1161 . . . . 5  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
2928eqcoms 2173 . . . 4  |-  ( 1  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3029a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
31 3mix2 1162 . . . . 5  |-  ( N  =  2  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3231eqcoms 2173 . . . 4  |-  ( 2  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3332a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
34 simp3 994 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
3534biantrurd 303 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
3  <_  N  <->  ( N  <_  3  /\  3  <_  N ) ) )
36 2nn0 9152 . . . . . . . 8  |-  2  e.  NN0
37 nn0ltp1le 9274 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
3836, 37mpan 422 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
39 df-3 8938 . . . . . . . 8  |-  3  =  ( 2  +  1 )
4039breq1i 3996 . . . . . . 7  |-  ( 3  <_  N  <->  ( 2  +  1 )  <_  N )
4138, 40bitr4di 197 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  3  <_  N ) )
422, 41syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  3  <_  N ) )
432nn0red 9189 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
44 3re 8952 . . . . . 6  |-  3  e.  RR
45 letri3 8000 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR )  ->  ( N  =  3  <-> 
( N  <_  3  /\  3  <_  N ) ) )
4643, 44, 45sylancl 411 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  3  <->  ( N  <_  3  /\  3  <_  N ) ) )
4735, 42, 463bitr4d 219 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  N  = 
3 ) )
48 3mix3 1163 . . . 4  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
4947, 48syl6bi 162 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5030, 33, 493jaod 1299 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  =  N  \/  2  =  N  \/  2  <  N
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5127, 50mpd 13 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    \/ w3o 972    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   2c2 8929   3c3 8930   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-3 8938  df-n0 9136  df-z 9213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator