ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 Unicode version

Theorem nn01to3 9613
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 998 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  1  <_  N )
2 simp1 997 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  NN0 )
3 1z 9275 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 9269 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9296 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 414 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
72, 6syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
81, 7mpbid 147 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <  N  \/  1  =  N )
)
9 1nn0 9188 . . . . . . . . . . 11  |-  1  e.  NN0
10 nn0ltp1le 9311 . . . . . . . . . . 11  |-  ( ( 1  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
119, 10mpan 424 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
12 df-2 8974 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
1312breq1i 4009 . . . . . . . . . 10  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
1411, 13bitr4di 198 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  2  <_  N ) )
15 2z 9277 . . . . . . . . . 10  |-  2  e.  ZZ
16 zleloe 9296 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1715, 4, 16sylancr 414 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1814, 17bitrd 188 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1918orbi1d 791 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  <->  ( ( 2  <  N  \/  2  =  N
)  \/  1  =  N ) ) )
202, 19syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  <  N  \/  1  =  N
)  <->  ( ( 2  <  N  \/  2  =  N )  \/  1  =  N ) ) )
218, 20mpbid 147 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 2  <  N  \/  2  =  N
)  \/  1  =  N ) )
2221orcomd 729 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  <  N  \/  2  =  N
) ) )
23 orcom 728 . . . . 5  |-  ( ( 2  <  N  \/  2  =  N )  <->  ( 2  =  N  \/  2  <  N ) )
2423orbi2i 762 . . . 4  |-  ( ( 1  =  N  \/  ( 2  <  N  \/  2  =  N
) )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2522, 24sylib 122 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  =  N  \/  2  <  N
) ) )
26 3orass 981 . . 3  |-  ( ( 1  =  N  \/  2  =  N  \/  2  <  N )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2725, 26sylibr 134 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  2  =  N  \/  2  <  N ) )
28 3mix1 1166 . . . . 5  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
2928eqcoms 2180 . . . 4  |-  ( 1  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3029a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
31 3mix2 1167 . . . . 5  |-  ( N  =  2  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3231eqcoms 2180 . . . 4  |-  ( 2  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3332a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
34 simp3 999 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
3534biantrurd 305 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
3  <_  N  <->  ( N  <_  3  /\  3  <_  N ) ) )
36 2nn0 9189 . . . . . . . 8  |-  2  e.  NN0
37 nn0ltp1le 9311 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
3836, 37mpan 424 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
39 df-3 8975 . . . . . . . 8  |-  3  =  ( 2  +  1 )
4039breq1i 4009 . . . . . . 7  |-  ( 3  <_  N  <->  ( 2  +  1 )  <_  N )
4138, 40bitr4di 198 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  3  <_  N ) )
422, 41syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  3  <_  N ) )
432nn0red 9226 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
44 3re 8989 . . . . . 6  |-  3  e.  RR
45 letri3 8034 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR )  ->  ( N  =  3  <-> 
( N  <_  3  /\  3  <_  N ) ) )
4643, 44, 45sylancl 413 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  3  <->  ( N  <_  3  /\  3  <_  N ) ) )
4735, 42, 463bitr4d 220 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  N  = 
3 ) )
48 3mix3 1168 . . . 4  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
4947, 48syl6bi 163 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5030, 33, 493jaod 1304 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  =  N  \/  2  =  N  \/  2  <  N
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5127, 50mpd 13 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4002  (class class class)co 5872   RRcr 7807   1c1 7809    + caddc 7811    < clt 7988    <_ cle 7989   2c2 8966   3c3 8967   NN0cn0 9172   ZZcz 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-2 8974  df-3 8975  df-n0 9173  df-z 9250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator