| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn01to3 | Unicode version | ||
| Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn01to3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . . . . . 7
| |
| 2 | simp1 1000 |
. . . . . . . 8
| |
| 3 | 1z 9433 |
. . . . . . . . 9
| |
| 4 | nn0z 9427 |
. . . . . . . . 9
| |
| 5 | zleloe 9454 |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . . . 8
|
| 7 | 2, 6 | syl 14 |
. . . . . . 7
|
| 8 | 1, 7 | mpbid 147 |
. . . . . 6
|
| 9 | 1nn0 9346 |
. . . . . . . . . . 11
| |
| 10 | nn0ltp1le 9470 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | mpan 424 |
. . . . . . . . . 10
|
| 12 | df-2 9130 |
. . . . . . . . . . 11
| |
| 13 | 12 | breq1i 4066 |
. . . . . . . . . 10
|
| 14 | 11, 13 | bitr4di 198 |
. . . . . . . . 9
|
| 15 | 2z 9435 |
. . . . . . . . . 10
| |
| 16 | zleloe 9454 |
. . . . . . . . . 10
| |
| 17 | 15, 4, 16 | sylancr 414 |
. . . . . . . . 9
|
| 18 | 14, 17 | bitrd 188 |
. . . . . . . 8
|
| 19 | 18 | orbi1d 793 |
. . . . . . 7
|
| 20 | 2, 19 | syl 14 |
. . . . . 6
|
| 21 | 8, 20 | mpbid 147 |
. . . . 5
|
| 22 | 21 | orcomd 731 |
. . . 4
|
| 23 | orcom 730 |
. . . . 5
| |
| 24 | 23 | orbi2i 764 |
. . . 4
|
| 25 | 22, 24 | sylib 122 |
. . 3
|
| 26 | 3orass 984 |
. . 3
| |
| 27 | 25, 26 | sylibr 134 |
. 2
|
| 28 | 3mix1 1169 |
. . . . 5
| |
| 29 | 28 | eqcoms 2210 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | 3mix2 1170 |
. . . . 5
| |
| 32 | 31 | eqcoms 2210 |
. . . 4
|
| 33 | 32 | a1i 9 |
. . 3
|
| 34 | simp3 1002 |
. . . . . 6
| |
| 35 | 34 | biantrurd 305 |
. . . . 5
|
| 36 | 2nn0 9347 |
. . . . . . . 8
| |
| 37 | nn0ltp1le 9470 |
. . . . . . . 8
| |
| 38 | 36, 37 | mpan 424 |
. . . . . . 7
|
| 39 | df-3 9131 |
. . . . . . . 8
| |
| 40 | 39 | breq1i 4066 |
. . . . . . 7
|
| 41 | 38, 40 | bitr4di 198 |
. . . . . 6
|
| 42 | 2, 41 | syl 14 |
. . . . 5
|
| 43 | 2 | nn0red 9384 |
. . . . . 6
|
| 44 | 3re 9145 |
. . . . . 6
| |
| 45 | letri3 8188 |
. . . . . 6
| |
| 46 | 43, 44, 45 | sylancl 413 |
. . . . 5
|
| 47 | 35, 42, 46 | 3bitr4d 220 |
. . . 4
|
| 48 | 3mix3 1171 |
. . . 4
| |
| 49 | 47, 48 | biimtrdi 163 |
. . 3
|
| 50 | 30, 33, 49 | 3jaod 1317 |
. 2
|
| 51 | 27, 50 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-3 9131 df-n0 9331 df-z 9408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |