ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 Unicode version

Theorem nn01to3 9409
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 982 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  1  <_  N )
2 simp1 981 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  NN0 )
3 1z 9080 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 9074 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9101 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 410 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
72, 6syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
81, 7mpbid 146 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <  N  \/  1  =  N )
)
9 1nn0 8993 . . . . . . . . . . 11  |-  1  e.  NN0
10 nn0ltp1le 9116 . . . . . . . . . . 11  |-  ( ( 1  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
119, 10mpan 420 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
12 df-2 8779 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
1312breq1i 3936 . . . . . . . . . 10  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
1411, 13syl6bbr 197 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  2  <_  N ) )
15 2z 9082 . . . . . . . . . 10  |-  2  e.  ZZ
16 zleloe 9101 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1715, 4, 16sylancr 410 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1814, 17bitrd 187 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1918orbi1d 780 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  <->  ( ( 2  <  N  \/  2  =  N
)  \/  1  =  N ) ) )
202, 19syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  <  N  \/  1  =  N
)  <->  ( ( 2  <  N  \/  2  =  N )  \/  1  =  N ) ) )
218, 20mpbid 146 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 2  <  N  \/  2  =  N
)  \/  1  =  N ) )
2221orcomd 718 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  <  N  \/  2  =  N
) ) )
23 orcom 717 . . . . 5  |-  ( ( 2  <  N  \/  2  =  N )  <->  ( 2  =  N  \/  2  <  N ) )
2423orbi2i 751 . . . 4  |-  ( ( 1  =  N  \/  ( 2  <  N  \/  2  =  N
) )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2522, 24sylib 121 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  =  N  \/  2  <  N
) ) )
26 3orass 965 . . 3  |-  ( ( 1  =  N  \/  2  =  N  \/  2  <  N )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2725, 26sylibr 133 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  2  =  N  \/  2  <  N ) )
28 3mix1 1150 . . . . 5  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
2928eqcoms 2142 . . . 4  |-  ( 1  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3029a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
31 3mix2 1151 . . . . 5  |-  ( N  =  2  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3231eqcoms 2142 . . . 4  |-  ( 2  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3332a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
34 simp3 983 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
3534biantrurd 303 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
3  <_  N  <->  ( N  <_  3  /\  3  <_  N ) ) )
36 2nn0 8994 . . . . . . . 8  |-  2  e.  NN0
37 nn0ltp1le 9116 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
3836, 37mpan 420 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
39 df-3 8780 . . . . . . . 8  |-  3  =  ( 2  +  1 )
4039breq1i 3936 . . . . . . 7  |-  ( 3  <_  N  <->  ( 2  +  1 )  <_  N )
4138, 40syl6bbr 197 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  3  <_  N ) )
422, 41syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  3  <_  N ) )
432nn0red 9031 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
44 3re 8794 . . . . . 6  |-  3  e.  RR
45 letri3 7845 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR )  ->  ( N  =  3  <-> 
( N  <_  3  /\  3  <_  N ) ) )
4643, 44, 45sylancl 409 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  3  <->  ( N  <_  3  /\  3  <_  N ) ) )
4735, 42, 463bitr4d 219 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  N  = 
3 ) )
48 3mix3 1152 . . . 4  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
4947, 48syl6bi 162 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5030, 33, 493jaod 1282 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  =  N  \/  2  =  N  \/  2  <  N
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5127, 50mpd 13 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    \/ w3o 961    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   2c2 8771   3c3 8772   NN0cn0 8977   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-3 8780  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator