ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 Unicode version

Theorem nn01to3 9812
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 1022 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  1  <_  N )
2 simp1 1021 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  NN0 )
3 1z 9472 . . . . . . . . 9  |-  1  e.  ZZ
4 nn0z 9466 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9493 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 414 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
72, 6syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
81, 7mpbid 147 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  <  N  \/  1  =  N )
)
9 1nn0 9385 . . . . . . . . . . 11  |-  1  e.  NN0
10 nn0ltp1le 9509 . . . . . . . . . . 11  |-  ( ( 1  e.  NN0  /\  N  e.  NN0 )  -> 
( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
119, 10mpan 424 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
12 df-2 9169 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
1312breq1i 4090 . . . . . . . . . 10  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
1411, 13bitr4di 198 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  2  <_  N ) )
15 2z 9474 . . . . . . . . . 10  |-  2  e.  ZZ
16 zleloe 9493 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1715, 4, 16sylancr 414 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1814, 17bitrd 188 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
1918orbi1d 796 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  <->  ( ( 2  <  N  \/  2  =  N
)  \/  1  =  N ) ) )
202, 19syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  <  N  \/  1  =  N
)  <->  ( ( 2  <  N  \/  2  =  N )  \/  1  =  N ) ) )
218, 20mpbid 147 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 2  <  N  \/  2  =  N
)  \/  1  =  N ) )
2221orcomd 734 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  <  N  \/  2  =  N
) ) )
23 orcom 733 . . . . 5  |-  ( ( 2  <  N  \/  2  =  N )  <->  ( 2  =  N  \/  2  <  N ) )
2423orbi2i 767 . . . 4  |-  ( ( 1  =  N  \/  ( 2  <  N  \/  2  =  N
) )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2522, 24sylib 122 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  ( 2  =  N  \/  2  <  N
) ) )
26 3orass 1005 . . 3  |-  ( ( 1  =  N  \/  2  =  N  \/  2  <  N )  <->  ( 1  =  N  \/  (
2  =  N  \/  2  <  N ) ) )
2725, 26sylibr 134 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  \/  2  =  N  \/  2  <  N ) )
28 3mix1 1190 . . . . 5  |-  ( N  =  1  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
2928eqcoms 2232 . . . 4  |-  ( 1  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3029a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
1  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
31 3mix2 1191 . . . . 5  |-  ( N  =  2  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3231eqcoms 2232 . . . 4  |-  ( 2  =  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
3332a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  =  N  -> 
( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
34 simp3 1023 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  <_  3 )
3534biantrurd 305 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
3  <_  N  <->  ( N  <_  3  /\  3  <_  N ) ) )
36 2nn0 9386 . . . . . . . 8  |-  2  e.  NN0
37 nn0ltp1le 9509 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
3836, 37mpan 424 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  ( 2  +  1 )  <_  N ) )
39 df-3 9170 . . . . . . . 8  |-  3  =  ( 2  +  1 )
4039breq1i 4090 . . . . . . 7  |-  ( 3  <_  N  <->  ( 2  +  1 )  <_  N )
4138, 40bitr4di 198 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  <  N  <->  3  <_  N ) )
422, 41syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  3  <_  N ) )
432nn0red 9423 . . . . . 6  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  N  e.  RR )
44 3re 9184 . . . . . 6  |-  3  e.  RR
45 letri3 8227 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR )  ->  ( N  =  3  <-> 
( N  <_  3  /\  3  <_  N ) ) )
4643, 44, 45sylancl 413 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  3  <->  ( N  <_  3  /\  3  <_  N ) ) )
4735, 42, 463bitr4d 220 . . . 4  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  <->  N  = 
3 ) )
48 3mix3 1192 . . . 4  |-  ( N  =  3  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
4947, 48biimtrdi 163 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
2  <  N  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5030, 33, 493jaod 1338 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  (
( 1  =  N  \/  2  =  N  \/  2  <  N
)  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) ) )
5127, 50mpd 13 1  |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   2c2 9161   3c3 9162   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-n0 9370  df-z 9447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator