| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elnn0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9339 |
. . . 4
| |
| 2 | elnn0 9332 |
. . . . . . 7
| |
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | orcomd 731 |
. . . . 5
|
| 5 | 3mix1 1169 |
. . . . . 6
| |
| 6 | 3mix2 1170 |
. . . . . 6
| |
| 7 | 5, 6 | jaoi 718 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | elz 9409 |
. . . 4
| |
| 10 | 1, 8, 9 | sylanbrc 417 |
. . 3
|
| 11 | nn0ge0 9355 |
. . 3
| |
| 12 | 10, 11 | jca 306 |
. 2
|
| 13 | 9 | simprbi 275 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 0nn0 9345 |
. . . . . 6
| |
| 16 | eleq1 2270 |
. . . . . 6
| |
| 17 | 15, 16 | mpbiri 168 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | nnnn0 9337 |
. . . . 5
| |
| 20 | 19 | a1i 9 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | 0red 8108 |
. . . . . . . 8
| |
| 23 | zre 9411 |
. . . . . . . . 9
| |
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 22, 24 | lenltd 8225 |
. . . . . . 7
|
| 26 | 21, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nngt0 9096 |
. . . . . . 7
| |
| 28 | 24 | lt0neg1d 8623 |
. . . . . . 7
|
| 29 | 27, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 26, 29 | mtod 665 |
. . . . 5
|
| 31 | 30 | pm2.21d 620 |
. . . 4
|
| 32 | 18, 20, 31 | 3jaod 1317 |
. . 3
|
| 33 | 14, 32 | mpd 13 |
. 2
|
| 34 | 12, 33 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: nn0zrab 9432 znn0sub 9473 nn0ind 9522 fnn0ind 9524 fznn0 10270 elfz0ubfz0 10282 elfz0fzfz0 10283 fz0fzelfz0 10284 elfzmlbp 10289 difelfzle 10291 difelfznle 10292 elfzo0z 10345 fzofzim 10349 ubmelm1fzo 10392 flqge0nn0 10473 zmodcl 10526 modqmuladdnn0 10550 modsumfzodifsn 10578 uzennn 10618 zsqcl2 10799 iswrdiz 11038 swrdswrdlem 11195 swrdswrd 11196 swrdccatin2 11220 pfxccatin12lem2 11222 pfxccatin12lem3 11223 nn0abscl 11511 nn0maxcl 11651 geolim2 11938 cvgratnnlemabsle 11953 oexpneg 12303 oddnn02np1 12306 evennn02n 12308 nn0ehalf 12329 nn0oddm1d2 12335 divalgb 12351 bitsinv1lem 12387 dfgcd2 12450 uzwodc 12473 algcvga 12488 hashgcdlem 12675 pockthlem 12794 4sqlem14 12842 ennnfoneleminc 12897 gausslemma2dlem0h 15648 |
| Copyright terms: Public domain | W3C validator |