| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elnn0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9378 |
. . . 4
| |
| 2 | elnn0 9371 |
. . . . . . 7
| |
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | orcomd 734 |
. . . . 5
|
| 5 | 3mix1 1190 |
. . . . . 6
| |
| 6 | 3mix2 1191 |
. . . . . 6
| |
| 7 | 5, 6 | jaoi 721 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | elz 9448 |
. . . 4
| |
| 10 | 1, 8, 9 | sylanbrc 417 |
. . 3
|
| 11 | nn0ge0 9394 |
. . 3
| |
| 12 | 10, 11 | jca 306 |
. 2
|
| 13 | 9 | simprbi 275 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 0nn0 9384 |
. . . . . 6
| |
| 16 | eleq1 2292 |
. . . . . 6
| |
| 17 | 15, 16 | mpbiri 168 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | nnnn0 9376 |
. . . . 5
| |
| 20 | 19 | a1i 9 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | 0red 8147 |
. . . . . . . 8
| |
| 23 | zre 9450 |
. . . . . . . . 9
| |
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 22, 24 | lenltd 8264 |
. . . . . . 7
|
| 26 | 21, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nngt0 9135 |
. . . . . . 7
| |
| 28 | 24 | lt0neg1d 8662 |
. . . . . . 7
|
| 29 | 27, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 26, 29 | mtod 667 |
. . . . 5
|
| 31 | 30 | pm2.21d 622 |
. . . 4
|
| 32 | 18, 20, 31 | 3jaod 1338 |
. . 3
|
| 33 | 14, 32 | mpd 13 |
. 2
|
| 34 | 12, 33 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: nn0zrab 9471 znn0sub 9512 nn0ind 9561 fnn0ind 9563 fznn0 10309 elfz0ubfz0 10321 elfz0fzfz0 10322 fz0fzelfz0 10323 elfzmlbp 10328 difelfzle 10330 difelfznle 10331 elfzo0z 10384 fzofzim 10388 ubmelm1fzo 10432 flqge0nn0 10513 zmodcl 10566 modqmuladdnn0 10590 modsumfzodifsn 10618 uzennn 10658 zsqcl2 10839 iswrdiz 11078 swrdswrdlem 11236 swrdswrd 11237 swrdccatin2 11261 pfxccatin12lem2 11263 pfxccatin12lem3 11264 nn0abscl 11596 nn0maxcl 11736 geolim2 12023 cvgratnnlemabsle 12038 oexpneg 12388 oddnn02np1 12391 evennn02n 12393 nn0ehalf 12414 nn0oddm1d2 12420 divalgb 12436 bitsinv1lem 12472 dfgcd2 12535 uzwodc 12558 algcvga 12573 hashgcdlem 12760 pockthlem 12879 4sqlem14 12927 ennnfoneleminc 12982 gausslemma2dlem0h 15735 |
| Copyright terms: Public domain | W3C validator |