ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z Unicode version

Theorem elnn0z 9385
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 9304 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
2 elnn0 9297 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32biimpi 120 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
43orcomd 731 . . . . 5  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN ) )
5 3mix1 1169 . . . . . 6  |-  ( N  =  0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
6 3mix2 1170 . . . . . 6  |-  ( N  e.  NN  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
75, 6jaoi 718 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
84, 7syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
9 elz 9374 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
101, 8, 9sylanbrc 417 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
11 nn0ge0 9320 . . 3  |-  ( N  e.  NN0  ->  0  <_  N )
1210, 11jca 306 . 2  |-  ( N  e.  NN0  ->  ( N  e.  ZZ  /\  0  <_  N ) )
139simprbi 275 . . . 4  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
1413adantr 276 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
15 0nn0 9310 . . . . . 6  |-  0  e.  NN0
16 eleq1 2268 . . . . . 6  |-  ( N  =  0  ->  ( N  e.  NN0  <->  0  e.  NN0 ) )
1715, 16mpbiri 168 . . . . 5  |-  ( N  =  0  ->  N  e.  NN0 )
1817a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  ->  N  e.  NN0 ) )
19 nnnn0 9302 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
2019a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  e.  NN  ->  N  e.  NN0 )
)
21 simpr 110 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  <_  N )
22 0red 8073 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  e.  RR )
23 zre 9376 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
2423adantr 276 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  RR )
2522, 24lenltd 8190 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( 0  <_  N  <->  -.  N  <  0 ) )
2621, 25mpbid 147 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  N  <  0
)
27 nngt0 9061 . . . . . . 7  |-  ( -u N  e.  NN  ->  0  <  -u N )
2824lt0neg1d 8588 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  <  0  <->  0  <  -u N ) )
2927, 28imbitrrid 156 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  <  0 ) )
3026, 29mtod 665 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  -u N  e.  NN )
3130pm2.21d 620 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  e.  NN0 )
)
3218, 20, 313jaod 1317 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  N  e.  NN0 ) )
3314, 32mpd 13 . 2  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  NN0 )
3412, 33impbii 126 1  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4044   RRcr 7924   0cc0 7925    < clt 8107    <_ cle 8108   -ucneg 8244   NNcn 9036   NN0cn0 9295   ZZcz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by:  nn0zrab  9397  znn0sub  9438  nn0ind  9487  fnn0ind  9489  fznn0  10235  elfz0ubfz0  10247  elfz0fzfz0  10248  fz0fzelfz0  10249  elfzmlbp  10254  difelfzle  10256  difelfznle  10257  elfzo0z  10308  fzofzim  10312  ubmelm1fzo  10355  flqge0nn0  10436  zmodcl  10489  modqmuladdnn0  10513  modsumfzodifsn  10541  uzennn  10581  zsqcl2  10762  iswrdiz  11001  nn0abscl  11396  nn0maxcl  11536  geolim2  11823  cvgratnnlemabsle  11838  oexpneg  12188  oddnn02np1  12191  evennn02n  12193  nn0ehalf  12214  nn0oddm1d2  12220  divalgb  12236  bitsinv1lem  12272  dfgcd2  12335  uzwodc  12358  algcvga  12373  hashgcdlem  12560  pockthlem  12679  4sqlem14  12727  ennnfoneleminc  12782  gausslemma2dlem0h  15533
  Copyright terms: Public domain W3C validator