Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version |
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elnn0z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9123 | . . . 4 | |
2 | elnn0 9116 | . . . . . . 7 | |
3 | 2 | biimpi 119 | . . . . . 6 |
4 | 3 | orcomd 719 | . . . . 5 |
5 | 3mix1 1156 | . . . . . 6 | |
6 | 3mix2 1157 | . . . . . 6 | |
7 | 5, 6 | jaoi 706 | . . . . 5 |
8 | 4, 7 | syl 14 | . . . 4 |
9 | elz 9193 | . . . 4 | |
10 | 1, 8, 9 | sylanbrc 414 | . . 3 |
11 | nn0ge0 9139 | . . 3 | |
12 | 10, 11 | jca 304 | . 2 |
13 | 9 | simprbi 273 | . . . 4 |
14 | 13 | adantr 274 | . . 3 |
15 | 0nn0 9129 | . . . . . 6 | |
16 | eleq1 2229 | . . . . . 6 | |
17 | 15, 16 | mpbiri 167 | . . . . 5 |
18 | 17 | a1i 9 | . . . 4 |
19 | nnnn0 9121 | . . . . 5 | |
20 | 19 | a1i 9 | . . . 4 |
21 | simpr 109 | . . . . . . 7 | |
22 | 0red 7900 | . . . . . . . 8 | |
23 | zre 9195 | . . . . . . . . 9 | |
24 | 23 | adantr 274 | . . . . . . . 8 |
25 | 22, 24 | lenltd 8016 | . . . . . . 7 |
26 | 21, 25 | mpbid 146 | . . . . . 6 |
27 | nngt0 8882 | . . . . . . 7 | |
28 | 24 | lt0neg1d 8413 | . . . . . . 7 |
29 | 27, 28 | syl5ibr 155 | . . . . . 6 |
30 | 26, 29 | mtod 653 | . . . . 5 |
31 | 30 | pm2.21d 609 | . . . 4 |
32 | 18, 20, 31 | 3jaod 1294 | . . 3 |
33 | 14, 32 | mpd 13 | . 2 |
34 | 12, 33 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 cc0 7753 clt 7933 cle 7934 cneg 8070 cn 8857 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: nn0zrab 9216 znn0sub 9256 nn0ind 9305 fnn0ind 9307 fznn0 10048 elfz0ubfz0 10060 elfz0fzfz0 10061 fz0fzelfz0 10062 elfzmlbp 10067 difelfzle 10069 difelfznle 10070 elfzo0z 10119 fzofzim 10123 ubmelm1fzo 10161 flqge0nn0 10228 zmodcl 10279 modqmuladdnn0 10303 modsumfzodifsn 10331 uzennn 10371 zsqcl2 10532 nn0abscl 11027 geolim2 11453 cvgratnnlemabsle 11468 oexpneg 11814 oddnn02np1 11817 evennn02n 11819 nn0ehalf 11840 nn0oddm1d2 11846 divalgb 11862 dfgcd2 11947 uzwodc 11970 algcvga 11983 hashgcdlem 12170 pockthlem 12286 ennnfoneleminc 12344 |
Copyright terms: Public domain | W3C validator |