| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elnn0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9306 |
. . . 4
| |
| 2 | elnn0 9299 |
. . . . . . 7
| |
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | orcomd 731 |
. . . . 5
|
| 5 | 3mix1 1169 |
. . . . . 6
| |
| 6 | 3mix2 1170 |
. . . . . 6
| |
| 7 | 5, 6 | jaoi 718 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | elz 9376 |
. . . 4
| |
| 10 | 1, 8, 9 | sylanbrc 417 |
. . 3
|
| 11 | nn0ge0 9322 |
. . 3
| |
| 12 | 10, 11 | jca 306 |
. 2
|
| 13 | 9 | simprbi 275 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 0nn0 9312 |
. . . . . 6
| |
| 16 | eleq1 2268 |
. . . . . 6
| |
| 17 | 15, 16 | mpbiri 168 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | nnnn0 9304 |
. . . . 5
| |
| 20 | 19 | a1i 9 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | 0red 8075 |
. . . . . . . 8
| |
| 23 | zre 9378 |
. . . . . . . . 9
| |
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 22, 24 | lenltd 8192 |
. . . . . . 7
|
| 26 | 21, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nngt0 9063 |
. . . . . . 7
| |
| 28 | 24 | lt0neg1d 8590 |
. . . . . . 7
|
| 29 | 27, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 26, 29 | mtod 665 |
. . . . 5
|
| 31 | 30 | pm2.21d 620 |
. . . 4
|
| 32 | 18, 20, 31 | 3jaod 1317 |
. . 3
|
| 33 | 14, 32 | mpd 13 |
. 2
|
| 34 | 12, 33 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: nn0zrab 9399 znn0sub 9440 nn0ind 9489 fnn0ind 9491 fznn0 10237 elfz0ubfz0 10249 elfz0fzfz0 10250 fz0fzelfz0 10251 elfzmlbp 10256 difelfzle 10258 difelfznle 10259 elfzo0z 10310 fzofzim 10314 ubmelm1fzo 10357 flqge0nn0 10438 zmodcl 10491 modqmuladdnn0 10515 modsumfzodifsn 10543 uzennn 10583 zsqcl2 10764 iswrdiz 11003 nn0abscl 11429 nn0maxcl 11569 geolim2 11856 cvgratnnlemabsle 11871 oexpneg 12221 oddnn02np1 12224 evennn02n 12226 nn0ehalf 12247 nn0oddm1d2 12253 divalgb 12269 bitsinv1lem 12305 dfgcd2 12368 uzwodc 12391 algcvga 12406 hashgcdlem 12593 pockthlem 12712 4sqlem14 12760 ennnfoneleminc 12815 gausslemma2dlem0h 15566 |
| Copyright terms: Public domain | W3C validator |