ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z Unicode version

Theorem elnn0z 9025
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 8944 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
2 elnn0 8937 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32biimpi 119 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
43orcomd 703 . . . . 5  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN ) )
5 3mix1 1135 . . . . . 6  |-  ( N  =  0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
6 3mix2 1136 . . . . . 6  |-  ( N  e.  NN  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
75, 6jaoi 690 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
84, 7syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
9 elz 9014 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
101, 8, 9sylanbrc 413 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
11 nn0ge0 8960 . . 3  |-  ( N  e.  NN0  ->  0  <_  N )
1210, 11jca 304 . 2  |-  ( N  e.  NN0  ->  ( N  e.  ZZ  /\  0  <_  N ) )
139simprbi 273 . . . 4  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
1413adantr 274 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
15 0nn0 8950 . . . . . 6  |-  0  e.  NN0
16 eleq1 2180 . . . . . 6  |-  ( N  =  0  ->  ( N  e.  NN0  <->  0  e.  NN0 ) )
1715, 16mpbiri 167 . . . . 5  |-  ( N  =  0  ->  N  e.  NN0 )
1817a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  ->  N  e.  NN0 ) )
19 nnnn0 8942 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
2019a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  e.  NN  ->  N  e.  NN0 )
)
21 simpr 109 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  <_  N )
22 0red 7735 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  e.  RR )
23 zre 9016 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
2423adantr 274 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  RR )
2522, 24lenltd 7848 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( 0  <_  N  <->  -.  N  <  0 ) )
2621, 25mpbid 146 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  N  <  0
)
27 nngt0 8709 . . . . . . 7  |-  ( -u N  e.  NN  ->  0  <  -u N )
2824lt0neg1d 8245 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  <  0  <->  0  <  -u N ) )
2927, 28syl5ibr 155 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  <  0 ) )
3026, 29mtod 637 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  -u N  e.  NN )
3130pm2.21d 593 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  e.  NN0 )
)
3218, 20, 313jaod 1267 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  N  e.  NN0 ) )
3314, 32mpd 13 . 2  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  NN0 )
3412, 33impbii 125 1  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682    \/ w3o 946    = wceq 1316    e. wcel 1465   class class class wbr 3899   RRcr 7587   0cc0 7588    < clt 7768    <_ cle 7769   -ucneg 7902   NNcn 8684   NN0cn0 8935   ZZcz 9012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8685  df-n0 8936  df-z 9013
This theorem is referenced by:  nn0zrab  9037  znn0sub  9077  nn0ind  9123  fnn0ind  9125  fznn0  9848  elfz0ubfz0  9857  elfz0fzfz0  9858  fz0fzelfz0  9859  elfzmlbp  9864  difelfzle  9866  difelfznle  9867  elfzo0z  9916  fzofzim  9920  ubmelm1fzo  9958  flqge0nn0  10021  zmodcl  10072  modqmuladdnn0  10096  modsumfzodifsn  10124  uzennn  10164  zsqcl2  10325  nn0abscl  10812  geolim2  11236  cvgratnnlemabsle  11251  oexpneg  11486  oddnn02np1  11489  evennn02n  11491  nn0ehalf  11512  nn0oddm1d2  11518  divalgb  11534  dfgcd2  11614  algcvga  11644  hashgcdlem  11814  ennnfoneleminc  11835
  Copyright terms: Public domain W3C validator