Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version |
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elnn0z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9156 | . . . 4 | |
2 | elnn0 9149 | . . . . . . 7 | |
3 | 2 | biimpi 120 | . . . . . 6 |
4 | 3 | orcomd 729 | . . . . 5 |
5 | 3mix1 1166 | . . . . . 6 | |
6 | 3mix2 1167 | . . . . . 6 | |
7 | 5, 6 | jaoi 716 | . . . . 5 |
8 | 4, 7 | syl 14 | . . . 4 |
9 | elz 9226 | . . . 4 | |
10 | 1, 8, 9 | sylanbrc 417 | . . 3 |
11 | nn0ge0 9172 | . . 3 | |
12 | 10, 11 | jca 306 | . 2 |
13 | 9 | simprbi 275 | . . . 4 |
14 | 13 | adantr 276 | . . 3 |
15 | 0nn0 9162 | . . . . . 6 | |
16 | eleq1 2238 | . . . . . 6 | |
17 | 15, 16 | mpbiri 168 | . . . . 5 |
18 | 17 | a1i 9 | . . . 4 |
19 | nnnn0 9154 | . . . . 5 | |
20 | 19 | a1i 9 | . . . 4 |
21 | simpr 110 | . . . . . . 7 | |
22 | 0red 7933 | . . . . . . . 8 | |
23 | zre 9228 | . . . . . . . . 9 | |
24 | 23 | adantr 276 | . . . . . . . 8 |
25 | 22, 24 | lenltd 8049 | . . . . . . 7 |
26 | 21, 25 | mpbid 147 | . . . . . 6 |
27 | nngt0 8915 | . . . . . . 7 | |
28 | 24 | lt0neg1d 8446 | . . . . . . 7 |
29 | 27, 28 | syl5ibr 156 | . . . . . 6 |
30 | 26, 29 | mtod 663 | . . . . 5 |
31 | 30 | pm2.21d 619 | . . . 4 |
32 | 18, 20, 31 | 3jaod 1304 | . . 3 |
33 | 14, 32 | mpd 13 | . 2 |
34 | 12, 33 | impbii 126 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 w3o 977 wceq 1353 wcel 2146 class class class wbr 3998 cr 7785 cc0 7786 clt 7966 cle 7967 cneg 8103 cn 8890 cn0 9147 cz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 |
This theorem is referenced by: nn0zrab 9249 znn0sub 9289 nn0ind 9338 fnn0ind 9340 fznn0 10081 elfz0ubfz0 10093 elfz0fzfz0 10094 fz0fzelfz0 10095 elfzmlbp 10100 difelfzle 10102 difelfznle 10103 elfzo0z 10152 fzofzim 10156 ubmelm1fzo 10194 flqge0nn0 10261 zmodcl 10312 modqmuladdnn0 10336 modsumfzodifsn 10364 uzennn 10404 zsqcl2 10565 nn0abscl 11060 geolim2 11486 cvgratnnlemabsle 11501 oexpneg 11847 oddnn02np1 11850 evennn02n 11852 nn0ehalf 11873 nn0oddm1d2 11879 divalgb 11895 dfgcd2 11980 uzwodc 12003 algcvga 12016 hashgcdlem 12203 pockthlem 12319 ennnfoneleminc 12377 |
Copyright terms: Public domain | W3C validator |