| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elnn0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9304 |
. . . 4
| |
| 2 | elnn0 9297 |
. . . . . . 7
| |
| 3 | 2 | biimpi 120 |
. . . . . 6
|
| 4 | 3 | orcomd 731 |
. . . . 5
|
| 5 | 3mix1 1169 |
. . . . . 6
| |
| 6 | 3mix2 1170 |
. . . . . 6
| |
| 7 | 5, 6 | jaoi 718 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | elz 9374 |
. . . 4
| |
| 10 | 1, 8, 9 | sylanbrc 417 |
. . 3
|
| 11 | nn0ge0 9320 |
. . 3
| |
| 12 | 10, 11 | jca 306 |
. 2
|
| 13 | 9 | simprbi 275 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 0nn0 9310 |
. . . . . 6
| |
| 16 | eleq1 2268 |
. . . . . 6
| |
| 17 | 15, 16 | mpbiri 168 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | nnnn0 9302 |
. . . . 5
| |
| 20 | 19 | a1i 9 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | 0red 8073 |
. . . . . . . 8
| |
| 23 | zre 9376 |
. . . . . . . . 9
| |
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | 22, 24 | lenltd 8190 |
. . . . . . 7
|
| 26 | 21, 25 | mpbid 147 |
. . . . . 6
|
| 27 | nngt0 9061 |
. . . . . . 7
| |
| 28 | 24 | lt0neg1d 8588 |
. . . . . . 7
|
| 29 | 27, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 26, 29 | mtod 665 |
. . . . 5
|
| 31 | 30 | pm2.21d 620 |
. . . 4
|
| 32 | 18, 20, 31 | 3jaod 1317 |
. . 3
|
| 33 | 14, 32 | mpd 13 |
. 2
|
| 34 | 12, 33 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: nn0zrab 9397 znn0sub 9438 nn0ind 9487 fnn0ind 9489 fznn0 10235 elfz0ubfz0 10247 elfz0fzfz0 10248 fz0fzelfz0 10249 elfzmlbp 10254 difelfzle 10256 difelfznle 10257 elfzo0z 10308 fzofzim 10312 ubmelm1fzo 10355 flqge0nn0 10436 zmodcl 10489 modqmuladdnn0 10513 modsumfzodifsn 10541 uzennn 10581 zsqcl2 10762 iswrdiz 11001 nn0abscl 11396 nn0maxcl 11536 geolim2 11823 cvgratnnlemabsle 11838 oexpneg 12188 oddnn02np1 12191 evennn02n 12193 nn0ehalf 12214 nn0oddm1d2 12220 divalgb 12236 bitsinv1lem 12272 dfgcd2 12335 uzwodc 12358 algcvga 12373 hashgcdlem 12560 pockthlem 12679 4sqlem14 12727 ennnfoneleminc 12782 gausslemma2dlem0h 15533 |
| Copyright terms: Public domain | W3C validator |