| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elnn0z | Unicode version | ||
| Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) | 
| Ref | Expression | 
|---|---|
| elnn0z | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0re 9258 | 
. . . 4
 | |
| 2 | elnn0 9251 | 
. . . . . . 7
 | |
| 3 | 2 | biimpi 120 | 
. . . . . 6
 | 
| 4 | 3 | orcomd 730 | 
. . . . 5
 | 
| 5 | 3mix1 1168 | 
. . . . . 6
 | |
| 6 | 3mix2 1169 | 
. . . . . 6
 | |
| 7 | 5, 6 | jaoi 717 | 
. . . . 5
 | 
| 8 | 4, 7 | syl 14 | 
. . . 4
 | 
| 9 | elz 9328 | 
. . . 4
 | |
| 10 | 1, 8, 9 | sylanbrc 417 | 
. . 3
 | 
| 11 | nn0ge0 9274 | 
. . 3
 | |
| 12 | 10, 11 | jca 306 | 
. 2
 | 
| 13 | 9 | simprbi 275 | 
. . . 4
 | 
| 14 | 13 | adantr 276 | 
. . 3
 | 
| 15 | 0nn0 9264 | 
. . . . . 6
 | |
| 16 | eleq1 2259 | 
. . . . . 6
 | |
| 17 | 15, 16 | mpbiri 168 | 
. . . . 5
 | 
| 18 | 17 | a1i 9 | 
. . . 4
 | 
| 19 | nnnn0 9256 | 
. . . . 5
 | |
| 20 | 19 | a1i 9 | 
. . . 4
 | 
| 21 | simpr 110 | 
. . . . . . 7
 | |
| 22 | 0red 8027 | 
. . . . . . . 8
 | |
| 23 | zre 9330 | 
. . . . . . . . 9
 | |
| 24 | 23 | adantr 276 | 
. . . . . . . 8
 | 
| 25 | 22, 24 | lenltd 8144 | 
. . . . . . 7
 | 
| 26 | 21, 25 | mpbid 147 | 
. . . . . 6
 | 
| 27 | nngt0 9015 | 
. . . . . . 7
 | |
| 28 | 24 | lt0neg1d 8542 | 
. . . . . . 7
 | 
| 29 | 27, 28 | imbitrrid 156 | 
. . . . . 6
 | 
| 30 | 26, 29 | mtod 664 | 
. . . . 5
 | 
| 31 | 30 | pm2.21d 620 | 
. . . 4
 | 
| 32 | 18, 20, 31 | 3jaod 1315 | 
. . 3
 | 
| 33 | 14, 32 | mpd 13 | 
. 2
 | 
| 34 | 12, 33 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 | 
| This theorem is referenced by: nn0zrab 9351 znn0sub 9391 nn0ind 9440 fnn0ind 9442 fznn0 10188 elfz0ubfz0 10200 elfz0fzfz0 10201 fz0fzelfz0 10202 elfzmlbp 10207 difelfzle 10209 difelfznle 10210 elfzo0z 10260 fzofzim 10264 ubmelm1fzo 10302 flqge0nn0 10383 zmodcl 10436 modqmuladdnn0 10460 modsumfzodifsn 10488 uzennn 10528 zsqcl2 10709 iswrdiz 10942 nn0abscl 11250 nn0maxcl 11390 geolim2 11677 cvgratnnlemabsle 11692 oexpneg 12042 oddnn02np1 12045 evennn02n 12047 nn0ehalf 12068 nn0oddm1d2 12074 divalgb 12090 dfgcd2 12181 uzwodc 12204 algcvga 12219 hashgcdlem 12406 pockthlem 12525 4sqlem14 12573 ennnfoneleminc 12628 gausslemma2dlem0h 15297 | 
| Copyright terms: Public domain | W3C validator |