ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orrot Unicode version

Theorem 3orrot 968
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 717 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
2 3orass 965 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
3 df-3or 963 . 2  |-  ( ( ps  \/  ch  \/  ph )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
41, 2, 33bitr4i 211 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 697    \/ w3o 961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698
This theorem depends on definitions:  df-bi 116  df-3or 963
This theorem is referenced by:  3mix2  1151  3mix3  1152  eueq3dc  2858  tprot  3616  sotritrieq  4247  elnnz  9071  elznn  9077  ztri3or0  9103  zapne  9132
  Copyright terms: Public domain W3C validator