ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orrot Unicode version

Theorem 3orrot 984
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 728 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
2 3orass 981 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
3 df-3or 979 . 2  |-  ( ( ps  \/  ch  \/  ph )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
41, 2, 33bitr4i 212 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708    \/ w3o 977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-3or 979
This theorem is referenced by:  3mix2  1167  3mix3  1168  eueq3dc  2912  tprot  3686  sotritrieq  4326  exmidontriimlem3  7222  elnnz  9263  elznn  9269  ztri3or0  9295  zapne  9327
  Copyright terms: Public domain W3C validator