ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orrot Unicode version

Theorem 3orrot 974
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 718 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
2 3orass 971 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
3 df-3or 969 . 2  |-  ( ( ps  \/  ch  \/  ph )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
41, 2, 33bitr4i 211 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    \/ w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  3mix2  1157  3mix3  1158  eueq3dc  2900  tprot  3669  sotritrieq  4303  exmidontriimlem3  7179  elnnz  9201  elznn  9207  ztri3or0  9233  zapne  9265
  Copyright terms: Public domain W3C validator