ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgt Unicode version

Theorem elabgt 2901
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2906.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
elabgt  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elabgt
StepHypRef Expression
1 abid 2181 . . . . . . 7  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 eleq1 2256 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
31, 2bitr3id 194 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  A  e.  { x  |  ph } ) )
43bibi1d 233 . . . . 5  |-  ( x  =  A  ->  (
( ph  <->  ps )  <->  ( A  e.  { x  |  ph } 
<->  ps ) ) )
54biimpd 144 . . . 4  |-  ( x  =  A  ->  (
( ph  <->  ps )  ->  ( A  e.  { x  |  ph }  <->  ps )
) )
65a2i 11 . . 3  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
76alimi 1466 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
8 nfcv 2336 . . . 4  |-  F/_ x A
9 nfab1 2338 . . . . . 6  |-  F/_ x { x  |  ph }
109nfel2 2349 . . . . 5  |-  F/ x  A  e.  { x  |  ph }
11 nfv 1539 . . . . 5  |-  F/ x ps
1210, 11nfbi 1600 . . . 4  |-  F/ x
( A  e.  {
x  |  ph }  <->  ps )
13 pm5.5 242 . . . 4  |-  ( x  =  A  ->  (
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) )  <->  ( A  e.  { x  |  ph } 
<->  ps ) ) )
148, 12, 13spcgf 2842 . . 3  |-  ( A  e.  B  ->  ( A. x ( x  =  A  ->  ( A  e.  { x  |  ph } 
<->  ps ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) ) )
1514imp 124 . 2  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( A  e.  { x  |  ph } 
<->  ps ) ) )  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) )
167, 15sylan2 286 1  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  elrab3t  2915
  Copyright terms: Public domain W3C validator