Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspgt Unicode version

Theorem bj-rspgt 14678
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2840 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa  |-  F/_ x A
bj-rspg.nfb  |-  F/_ x B
bj-rspg.nf2  |-  F/ x ps
Assertion
Ref Expression
bj-rspgt  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) ) )

Proof of Theorem bj-rspgt
StepHypRef Expression
1 eleq1 2240 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
21imbi1d 231 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  e.  B  ->  ( A. x  e.  B  ph  ->  ph )
)  <->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ph ) ) ) )
32biimpd 144 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  B  ->  ( A. x  e.  B  ph  ->  ph )
)  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ph ) ) ) )
4 imim2 55 . . . . . . . 8  |-  ( (
ph  ->  ps )  -> 
( ( A. x  e.  B  ph  ->  ph )  ->  ( A. x  e.  B  ph  ->  ps ) ) )
54imim2d 54 . . . . . . 7  |-  ( (
ph  ->  ps )  -> 
( ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ph ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) ) )
63, 5syl9 72 . . . . . 6  |-  ( x  =  A  ->  (
( ph  ->  ps )  ->  ( ( x  e.  B  ->  ( A. x  e.  B  ph  ->  ph ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) ) ) )
76a2i 11 . . . . 5  |-  ( ( x  =  A  -> 
( ph  ->  ps )
)  ->  ( x  =  A  ->  ( ( x  e.  B  -> 
( A. x  e.  B  ph  ->  ph )
)  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) ) ) )
87alimi 1455 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  ->  A. x ( x  =  A  ->  ( (
x  e.  B  -> 
( A. x  e.  B  ph  ->  ph )
)  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) ) ) )
9 bj-rspg.nfa . . . . 5  |-  F/_ x A
10 bj-rspg.nfb . . . . . . 7  |-  F/_ x B
119, 10nfel 2328 . . . . . 6  |-  F/ x  A  e.  B
12 nfra1 2508 . . . . . . 7  |-  F/ x A. x  e.  B  ph
13 bj-rspg.nf2 . . . . . . 7  |-  F/ x ps
1412, 13nfim 1572 . . . . . 6  |-  F/ x
( A. x  e.  B  ph  ->  ps )
1511, 14nfim 1572 . . . . 5  |-  F/ x
( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) )
16 rsp 2524 . . . . . . 7  |-  ( A. x  e.  B  ph  ->  ( x  e.  B  ->  ph ) )
1716a1i 9 . . . . . 6  |-  ( x  =  A  ->  ( A. x  e.  B  ph 
->  ( x  e.  B  ->  ph ) ) )
1817com23 78 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  -> 
( A. x  e.  B  ph  ->  ph )
) )
199, 15, 18bj-vtoclgft 14667 . . . 4  |-  ( A. x ( x  =  A  ->  ( (
x  e.  B  -> 
( A. x  e.  B  ph  ->  ph )
)  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) ) )  ->  ( A  e.  B  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) ) )
208, 19syl 14 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  B  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) ) )
2120pm2.43d 50 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps ) ) )
2221com23 78 1  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353   F/wnf 1460    e. wcel 2148   F/_wnfc 2306   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741
This theorem is referenced by:  bj-rspg  14679
  Copyright terms: Public domain W3C validator