Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint Unicode version

Theorem bj-indint 15577
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint  |- Ind  |^| { x  e.  A  | Ind  x }
Distinct variable group:    x, A

Proof of Theorem bj-indint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 15573 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
21simplbi 274 . . . 4  |-  (Ind  x  -> 
(/)  e.  x )
32rgenw 2552 . . 3  |-  A. x  e.  A  (Ind  x  -> 
(/)  e.  x )
4 0ex 4160 . . . 4  |-  (/)  e.  _V
54elintrab 3886 . . 3  |-  ( (/)  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  (/)  e.  x
) )
63, 5mpbir 146 . 2  |-  (/)  e.  |^| { x  e.  A  | Ind  x }
7 bj-indsuc 15574 . . . . . 6  |-  (Ind  x  ->  ( y  e.  x  ->  suc  y  e.  x
) )
87a2i 11 . . . . 5  |-  ( (Ind  x  ->  y  e.  x )  ->  (Ind  x  ->  suc  y  e.  x ) )
98ralimi 2560 . . . 4  |-  ( A. x  e.  A  (Ind  x  ->  y  e.  x
)  ->  A. x  e.  A  (Ind  x  ->  suc  y  e.  x
) )
10 vex 2766 . . . . 5  |-  y  e. 
_V
1110elintrab 3886 . . . 4  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  y  e.  x ) )
1210bj-sucex 15569 . . . . 5  |-  suc  y  e.  _V
1312elintrab 3886 . . . 4  |-  ( suc  y  e.  |^| { x  e.  A  | Ind  x } 
<-> 
A. x  e.  A  (Ind  x  ->  suc  y  e.  x ) )
149, 11, 133imtr4i 201 . . 3  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  ->  suc  y  e.  |^| { x  e.  A  | Ind  x } )
1514rgen 2550 . 2  |-  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x }
16 df-bj-ind 15573 . 2  |-  (Ind  |^| { x  e.  A  | Ind  x }  <->  ( (/)  e.  |^| { x  e.  A  | Ind  x }  /\  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x } ) )
176, 15, 16mpbir2an 944 1  |- Ind  |^| { x  e.  A  | Ind  x }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   A.wral 2475   {crab 2479   (/)c0 3450   |^|cint 3874   suc csuc 4400  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-omind  15580
  Copyright terms: Public domain W3C validator