Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint Unicode version

Theorem bj-indint 13813
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint  |- Ind  |^| { x  e.  A  | Ind  x }
Distinct variable group:    x, A

Proof of Theorem bj-indint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 13809 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
21simplbi 272 . . . 4  |-  (Ind  x  -> 
(/)  e.  x )
32rgenw 2521 . . 3  |-  A. x  e.  A  (Ind  x  -> 
(/)  e.  x )
4 0ex 4109 . . . 4  |-  (/)  e.  _V
54elintrab 3836 . . 3  |-  ( (/)  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  (/)  e.  x
) )
63, 5mpbir 145 . 2  |-  (/)  e.  |^| { x  e.  A  | Ind  x }
7 bj-indsuc 13810 . . . . . 6  |-  (Ind  x  ->  ( y  e.  x  ->  suc  y  e.  x
) )
87a2i 11 . . . . 5  |-  ( (Ind  x  ->  y  e.  x )  ->  (Ind  x  ->  suc  y  e.  x ) )
98ralimi 2529 . . . 4  |-  ( A. x  e.  A  (Ind  x  ->  y  e.  x
)  ->  A. x  e.  A  (Ind  x  ->  suc  y  e.  x
) )
10 vex 2729 . . . . 5  |-  y  e. 
_V
1110elintrab 3836 . . . 4  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  y  e.  x ) )
1210bj-sucex 13805 . . . . 5  |-  suc  y  e.  _V
1312elintrab 3836 . . . 4  |-  ( suc  y  e.  |^| { x  e.  A  | Ind  x } 
<-> 
A. x  e.  A  (Ind  x  ->  suc  y  e.  x ) )
149, 11, 133imtr4i 200 . . 3  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  ->  suc  y  e.  |^| { x  e.  A  | Ind  x } )
1514rgen 2519 . 2  |-  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x }
16 df-bj-ind 13809 . 2  |-  (Ind  |^| { x  e.  A  | Ind  x }  <->  ( (/)  e.  |^| { x  e.  A  | Ind  x }  /\  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x } ) )
176, 15, 16mpbir2an 932 1  |- Ind  |^| { x  e.  A  | Ind  x }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   A.wral 2444   {crab 2448   (/)c0 3409   |^|cint 3824   suc csuc 4343  Ind wind 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by:  bj-omind  13816
  Copyright terms: Public domain W3C validator