Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | Unicode version |
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-indint | Ind Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-ind 13809 | . . . . 5 Ind | |
2 | 1 | simplbi 272 | . . . 4 Ind |
3 | 2 | rgenw 2521 | . . 3 Ind |
4 | 0ex 4109 | . . . 4 | |
5 | 4 | elintrab 3836 | . . 3 Ind Ind |
6 | 3, 5 | mpbir 145 | . 2 Ind |
7 | bj-indsuc 13810 | . . . . . 6 Ind | |
8 | 7 | a2i 11 | . . . . 5 Ind Ind |
9 | 8 | ralimi 2529 | . . . 4 Ind Ind |
10 | vex 2729 | . . . . 5 | |
11 | 10 | elintrab 3836 | . . . 4 Ind Ind |
12 | 10 | bj-sucex 13805 | . . . . 5 |
13 | 12 | elintrab 3836 | . . . 4 Ind Ind |
14 | 9, 11, 13 | 3imtr4i 200 | . . 3 Ind Ind |
15 | 14 | rgen 2519 | . 2 Ind Ind |
16 | df-bj-ind 13809 | . 2 Ind Ind Ind Ind Ind | |
17 | 6, 15, 16 | mpbir2an 932 | 1 Ind Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wral 2444 crab 2448 c0 3409 cint 3824 csuc 4343 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-omind 13816 |
Copyright terms: Public domain | W3C validator |