Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint Unicode version

Theorem bj-indint 16066
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint  |- Ind  |^| { x  e.  A  | Ind  x }
Distinct variable group:    x, A

Proof of Theorem bj-indint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 16062 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
21simplbi 274 . . . 4  |-  (Ind  x  -> 
(/)  e.  x )
32rgenw 2563 . . 3  |-  A. x  e.  A  (Ind  x  -> 
(/)  e.  x )
4 0ex 4187 . . . 4  |-  (/)  e.  _V
54elintrab 3911 . . 3  |-  ( (/)  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  (/)  e.  x
) )
63, 5mpbir 146 . 2  |-  (/)  e.  |^| { x  e.  A  | Ind  x }
7 bj-indsuc 16063 . . . . . 6  |-  (Ind  x  ->  ( y  e.  x  ->  suc  y  e.  x
) )
87a2i 11 . . . . 5  |-  ( (Ind  x  ->  y  e.  x )  ->  (Ind  x  ->  suc  y  e.  x ) )
98ralimi 2571 . . . 4  |-  ( A. x  e.  A  (Ind  x  ->  y  e.  x
)  ->  A. x  e.  A  (Ind  x  ->  suc  y  e.  x
) )
10 vex 2779 . . . . 5  |-  y  e. 
_V
1110elintrab 3911 . . . 4  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  y  e.  x ) )
1210bj-sucex 16058 . . . . 5  |-  suc  y  e.  _V
1312elintrab 3911 . . . 4  |-  ( suc  y  e.  |^| { x  e.  A  | Ind  x } 
<-> 
A. x  e.  A  (Ind  x  ->  suc  y  e.  x ) )
149, 11, 133imtr4i 201 . . 3  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  ->  suc  y  e.  |^| { x  e.  A  | Ind  x } )
1514rgen 2561 . 2  |-  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x }
16 df-bj-ind 16062 . 2  |-  (Ind  |^| { x  e.  A  | Ind  x }  <->  ( (/)  e.  |^| { x  e.  A  | Ind  x }  /\  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x } ) )
176, 15, 16mpbir2an 945 1  |- Ind  |^| { x  e.  A  | Ind  x }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   A.wral 2486   {crab 2490   (/)c0 3468   |^|cint 3899   suc csuc 4430  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-omind  16069
  Copyright terms: Public domain W3C validator