| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | Unicode version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 15867 |
. . . . 5
| |
| 2 | 1 | simplbi 274 |
. . . 4
|
| 3 | 2 | rgenw 2561 |
. . 3
|
| 4 | 0ex 4171 |
. . . 4
| |
| 5 | 4 | elintrab 3897 |
. . 3
|
| 6 | 3, 5 | mpbir 146 |
. 2
|
| 7 | bj-indsuc 15868 |
. . . . . 6
| |
| 8 | 7 | a2i 11 |
. . . . 5
|
| 9 | 8 | ralimi 2569 |
. . . 4
|
| 10 | vex 2775 |
. . . . 5
| |
| 11 | 10 | elintrab 3897 |
. . . 4
|
| 12 | 10 | bj-sucex 15863 |
. . . . 5
|
| 13 | 12 | elintrab 3897 |
. . . 4
|
| 14 | 9, 11, 13 | 3imtr4i 201 |
. . 3
|
| 15 | 14 | rgen 2559 |
. 2
|
| 16 | df-bj-ind 15867 |
. 2
| |
| 17 | 6, 15, 16 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15753 ax-bdor 15756 ax-bdex 15759 ax-bdeq 15760 ax-bdel 15761 ax-bdsb 15762 ax-bdsep 15824 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-bdc 15781 df-bj-ind 15867 |
| This theorem is referenced by: bj-omind 15874 |
| Copyright terms: Public domain | W3C validator |