Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint Unicode version

Theorem bj-indint 11826
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint  |- Ind  |^| { x  e.  A  | Ind  x }
Distinct variable group:    x, A

Proof of Theorem bj-indint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 11822 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
21simplbi 268 . . . 4  |-  (Ind  x  -> 
(/)  e.  x )
32rgenw 2430 . . 3  |-  A. x  e.  A  (Ind  x  -> 
(/)  e.  x )
4 0ex 3966 . . . 4  |-  (/)  e.  _V
54elintrab 3700 . . 3  |-  ( (/)  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  (/)  e.  x
) )
63, 5mpbir 144 . 2  |-  (/)  e.  |^| { x  e.  A  | Ind  x }
7 bj-indsuc 11823 . . . . . 6  |-  (Ind  x  ->  ( y  e.  x  ->  suc  y  e.  x
) )
87a2i 11 . . . . 5  |-  ( (Ind  x  ->  y  e.  x )  ->  (Ind  x  ->  suc  y  e.  x ) )
98ralimi 2438 . . . 4  |-  ( A. x  e.  A  (Ind  x  ->  y  e.  x
)  ->  A. x  e.  A  (Ind  x  ->  suc  y  e.  x
) )
10 vex 2622 . . . . 5  |-  y  e. 
_V
1110elintrab 3700 . . . 4  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  <->  A. x  e.  A  (Ind  x  ->  y  e.  x ) )
1210bj-sucex 11814 . . . . 5  |-  suc  y  e.  _V
1312elintrab 3700 . . . 4  |-  ( suc  y  e.  |^| { x  e.  A  | Ind  x } 
<-> 
A. x  e.  A  (Ind  x  ->  suc  y  e.  x ) )
149, 11, 133imtr4i 199 . . 3  |-  ( y  e.  |^| { x  e.  A  | Ind  x }  ->  suc  y  e.  |^| { x  e.  A  | Ind  x } )
1514rgen 2428 . 2  |-  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x }
16 df-bj-ind 11822 . 2  |-  (Ind  |^| { x  e.  A  | Ind  x }  <->  ( (/)  e.  |^| { x  e.  A  | Ind  x }  /\  A. y  e.  |^| { x  e.  A  | Ind  x } suc  y  e.  |^| { x  e.  A  | Ind  x } ) )
176, 15, 16mpbir2an 888 1  |- Ind  |^| { x  e.  A  | Ind  x }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   A.wral 2359   {crab 2363   (/)c0 3286   |^|cint 3688   suc csuc 4192  Ind wind 11821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-nul 3965  ax-pr 4036  ax-un 4260  ax-bd0 11704  ax-bdor 11707  ax-bdex 11710  ax-bdeq 11711  ax-bdel 11712  ax-bdsb 11713  ax-bdsep 11775
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-nul 3287  df-sn 3452  df-pr 3453  df-uni 3654  df-int 3689  df-suc 4198  df-bdc 11732  df-bj-ind 11822
This theorem is referenced by:  bj-omind  11829
  Copyright terms: Public domain W3C validator