| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | Unicode version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 16290 |
. . . . 5
| |
| 2 | 1 | simplbi 274 |
. . . 4
|
| 3 | 2 | rgenw 2585 |
. . 3
|
| 4 | 0ex 4211 |
. . . 4
| |
| 5 | 4 | elintrab 3935 |
. . 3
|
| 6 | 3, 5 | mpbir 146 |
. 2
|
| 7 | bj-indsuc 16291 |
. . . . . 6
| |
| 8 | 7 | a2i 11 |
. . . . 5
|
| 9 | 8 | ralimi 2593 |
. . . 4
|
| 10 | vex 2802 |
. . . . 5
| |
| 11 | 10 | elintrab 3935 |
. . . 4
|
| 12 | 10 | bj-sucex 16286 |
. . . . 5
|
| 13 | 12 | elintrab 3935 |
. . . 4
|
| 14 | 9, 11, 13 | 3imtr4i 201 |
. . 3
|
| 15 | 14 | rgen 2583 |
. 2
|
| 16 | df-bj-ind 16290 |
. 2
| |
| 17 | 6, 15, 16 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-omind 16297 |
| Copyright terms: Public domain | W3C validator |