| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indint | Unicode version | ||
| Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| bj-indint | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bj-ind 15573 | 
. . . . 5
 | |
| 2 | 1 | simplbi 274 | 
. . . 4
 | 
| 3 | 2 | rgenw 2552 | 
. . 3
 | 
| 4 | 0ex 4160 | 
. . . 4
 | |
| 5 | 4 | elintrab 3886 | 
. . 3
 | 
| 6 | 3, 5 | mpbir 146 | 
. 2
 | 
| 7 | bj-indsuc 15574 | 
. . . . . 6
 | |
| 8 | 7 | a2i 11 | 
. . . . 5
 | 
| 9 | 8 | ralimi 2560 | 
. . . 4
 | 
| 10 | vex 2766 | 
. . . . 5
 | |
| 11 | 10 | elintrab 3886 | 
. . . 4
 | 
| 12 | 10 | bj-sucex 15569 | 
. . . . 5
 | 
| 13 | 12 | elintrab 3886 | 
. . . 4
 | 
| 14 | 9, 11, 13 | 3imtr4i 201 | 
. . 3
 | 
| 15 | 14 | rgen 2550 | 
. 2
 | 
| 16 | df-bj-ind 15573 | 
. 2
 | |
| 17 | 6, 15, 16 | mpbir2an 944 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bj-omind 15580 | 
| Copyright terms: Public domain | W3C validator |