ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptt Unicode version

Theorem fvmptt 5577
Description: Closed theorem form of fvmpt 5563. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 988 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5488 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  ( ( x  e.  D  |->  B ) `
 A ) )
3 risset 2494 . . . . 5  |-  ( A  e.  D  <->  E. x  e.  D  x  =  A )
4 elex 2737 . . . . . 6  |-  ( C  e.  V  ->  C  e.  _V )
5 nfa1 1529 . . . . . . 7  |-  F/ x A. x ( x  =  A  ->  B  =  C )
6 nfv 1516 . . . . . . . 8  |-  F/ x  C  e.  _V
7 nffvmpt1 5497 . . . . . . . . 9  |-  F/_ x
( ( x  e.  D  |->  B ) `  A )
87nfeq1 2318 . . . . . . . 8  |-  F/ x
( ( x  e.  D  |->  B ) `  A )  =  C
96, 8nfim 1560 . . . . . . 7  |-  F/ x
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
10 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  e.  D )
11 simplr 520 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  =  C )
12 simprr 522 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  C  e.  _V )
1311, 12eqeltrd 2243 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  e.  _V )
14 eqid 2165 . . . . . . . . . . . . . 14  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1514fvmpt2 5569 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
1610, 13, 15syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  B )
17 simpll 519 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  =  A )
1817fveq2d 5490 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  ( ( x  e.  D  |->  B ) `  A
) )
1916, 18, 113eqtr3d 2206 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  A )  =  C )
2019exp43 370 . . . . . . . . . 10  |-  ( x  =  A  ->  ( B  =  C  ->  ( x  e.  D  -> 
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2120a2i 11 . . . . . . . . 9  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  =  A  ->  ( x  e.  D  ->  ( C  e.  _V  ->  ( (
x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2221com23 78 . . . . . . . 8  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  e.  D  ->  ( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
2322sps 1525 . . . . . . 7  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  (
x  e.  D  -> 
( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
245, 9, 23rexlimd 2580 . . . . . 6  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A
)  =  C ) ) )
254, 24syl7 69 . . . . 5  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
263, 25syl5bi 151 . . . 4  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( A  e.  D  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
2726imp32 255 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  ( A  e.  D  /\  C  e.  V )
)  ->  ( (
x  e.  D  |->  B ) `  A )  =  C )
28273adant2 1006 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  (
( x  e.  D  |->  B ) `  A
)  =  C )
292, 28eqtrd 2198 1  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968   A.wal 1341    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726    |-> cmpt 4043   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator