| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptt | Unicode version | ||
| Description: Closed theorem form of fvmpt 5638. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| fvmptt | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1000 | 
. . 3
 | |
| 2 | 1 | fveq1d 5560 | 
. 2
 | 
| 3 | risset 2525 | 
. . . . 5
 | |
| 4 | elex 2774 | 
. . . . . 6
 | |
| 5 | nfa1 1555 | 
. . . . . . 7
 | |
| 6 | nfv 1542 | 
. . . . . . . 8
 | |
| 7 | nffvmpt1 5569 | 
. . . . . . . . 9
 | |
| 8 | 7 | nfeq1 2349 | 
. . . . . . . 8
 | 
| 9 | 6, 8 | nfim 1586 | 
. . . . . . 7
 | 
| 10 | simprl 529 | 
. . . . . . . . . . . . 13
 | |
| 11 | simplr 528 | 
. . . . . . . . . . . . . 14
 | |
| 12 | simprr 531 | 
. . . . . . . . . . . . . 14
 | |
| 13 | 11, 12 | eqeltrd 2273 | 
. . . . . . . . . . . . 13
 | 
| 14 | eqid 2196 | 
. . . . . . . . . . . . . 14
 | |
| 15 | 14 | fvmpt2 5645 | 
. . . . . . . . . . . . 13
 | 
| 16 | 10, 13, 15 | syl2anc 411 | 
. . . . . . . . . . . 12
 | 
| 17 | simpll 527 | 
. . . . . . . . . . . . 13
 | |
| 18 | 17 | fveq2d 5562 | 
. . . . . . . . . . . 12
 | 
| 19 | 16, 18, 11 | 3eqtr3d 2237 | 
. . . . . . . . . . 11
 | 
| 20 | 19 | exp43 372 | 
. . . . . . . . . 10
 | 
| 21 | 20 | a2i 11 | 
. . . . . . . . 9
 | 
| 22 | 21 | com23 78 | 
. . . . . . . 8
 | 
| 23 | 22 | sps 1551 | 
. . . . . . 7
 | 
| 24 | 5, 9, 23 | rexlimd 2611 | 
. . . . . 6
 | 
| 25 | 4, 24 | syl7 69 | 
. . . . 5
 | 
| 26 | 3, 25 | biimtrid 152 | 
. . . 4
 | 
| 27 | 26 | imp32 257 | 
. . 3
 | 
| 28 | 27 | 3adant2 1018 | 
. 2
 | 
| 29 | 2, 28 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |