| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptt | Unicode version | ||
| Description: Closed theorem form of fvmpt 5658. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmptt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . 3
| |
| 2 | 1 | fveq1d 5580 |
. 2
|
| 3 | risset 2534 |
. . . . 5
| |
| 4 | elex 2783 |
. . . . . 6
| |
| 5 | nfa1 1564 |
. . . . . . 7
| |
| 6 | nfv 1551 |
. . . . . . . 8
| |
| 7 | nffvmpt1 5589 |
. . . . . . . . 9
| |
| 8 | 7 | nfeq1 2358 |
. . . . . . . 8
|
| 9 | 6, 8 | nfim 1595 |
. . . . . . 7
|
| 10 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 11 | simplr 528 |
. . . . . . . . . . . . . 14
| |
| 12 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | eqeltrd 2282 |
. . . . . . . . . . . . 13
|
| 14 | eqid 2205 |
. . . . . . . . . . . . . 14
| |
| 15 | 14 | fvmpt2 5665 |
. . . . . . . . . . . . 13
|
| 16 | 10, 13, 15 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 17 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | fveq2d 5582 |
. . . . . . . . . . . 12
|
| 19 | 16, 18, 11 | 3eqtr3d 2246 |
. . . . . . . . . . 11
|
| 20 | 19 | exp43 372 |
. . . . . . . . . 10
|
| 21 | 20 | a2i 11 |
. . . . . . . . 9
|
| 22 | 21 | com23 78 |
. . . . . . . 8
|
| 23 | 22 | sps 1560 |
. . . . . . 7
|
| 24 | 5, 9, 23 | rexlimd 2620 |
. . . . . 6
|
| 25 | 4, 24 | syl7 69 |
. . . . 5
|
| 26 | 3, 25 | biimtrid 152 |
. . . 4
|
| 27 | 26 | imp32 257 |
. . 3
|
| 28 | 27 | 3adant2 1019 |
. 2
|
| 29 | 2, 28 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |