Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptt | Unicode version |
Description: Closed theorem form of fvmpt 5563. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmptt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . . 3 | |
2 | 1 | fveq1d 5488 | . 2 |
3 | risset 2494 | . . . . 5 | |
4 | elex 2737 | . . . . . 6 | |
5 | nfa1 1529 | . . . . . . 7 | |
6 | nfv 1516 | . . . . . . . 8 | |
7 | nffvmpt1 5497 | . . . . . . . . 9 | |
8 | 7 | nfeq1 2318 | . . . . . . . 8 |
9 | 6, 8 | nfim 1560 | . . . . . . 7 |
10 | simprl 521 | . . . . . . . . . . . . 13 | |
11 | simplr 520 | . . . . . . . . . . . . . 14 | |
12 | simprr 522 | . . . . . . . . . . . . . 14 | |
13 | 11, 12 | eqeltrd 2243 | . . . . . . . . . . . . 13 |
14 | eqid 2165 | . . . . . . . . . . . . . 14 | |
15 | 14 | fvmpt2 5569 | . . . . . . . . . . . . 13 |
16 | 10, 13, 15 | syl2anc 409 | . . . . . . . . . . . 12 |
17 | simpll 519 | . . . . . . . . . . . . 13 | |
18 | 17 | fveq2d 5490 | . . . . . . . . . . . 12 |
19 | 16, 18, 11 | 3eqtr3d 2206 | . . . . . . . . . . 11 |
20 | 19 | exp43 370 | . . . . . . . . . 10 |
21 | 20 | a2i 11 | . . . . . . . . 9 |
22 | 21 | com23 78 | . . . . . . . 8 |
23 | 22 | sps 1525 | . . . . . . 7 |
24 | 5, 9, 23 | rexlimd 2580 | . . . . . 6 |
25 | 4, 24 | syl7 69 | . . . . 5 |
26 | 3, 25 | syl5bi 151 | . . . 4 |
27 | 26 | imp32 255 | . . 3 |
28 | 27 | 3adant2 1006 | . 2 |
29 | 2, 28 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wrex 2445 cvv 2726 cmpt 4043 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |