ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspct Unicode version

Theorem rspct 2823
Description: A closed version of rspc 2824. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1  |-  F/ x ps
Assertion
Ref Expression
rspct  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2449 . . . 4  |-  ( A. x  e.  B  ph  <->  A. x
( x  e.  B  ->  ph ) )
2 eleq1 2229 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
32adantr 274 . . . . . . . . 9  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( x  e.  B  <->  A  e.  B ) )
4 simpr 109 . . . . . . . . 9  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( ph  <->  ps ) )
53, 4imbi12d 233 . . . . . . . 8  |-  ( ( x  =  A  /\  ( ph  <->  ps ) )  -> 
( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )
65ex 114 . . . . . . 7  |-  ( x  =  A  ->  (
( ph  <->  ps )  ->  (
( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) ) )
76a2i 11 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps ) ) ) )
87alimi 1443 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( ( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps ) ) ) )
9 nfv 1516 . . . . . . 7  |-  F/ x  A  e.  B
10 rspct.1 . . . . . . 7  |-  F/ x ps
119, 10nfim 1560 . . . . . 6  |-  F/ x
( A  e.  B  ->  ps )
12 nfcv 2308 . . . . . 6  |-  F/_ x A
1311, 12spcgft 2803 . . . . 5  |-  ( A. x ( x  =  A  ->  ( (
x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )  ->  ( A  e.  B  ->  ( A. x ( x  e.  B  ->  ph )  ->  ( A  e.  B  ->  ps ) ) ) )
148, 13syl 14 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ( x  e.  B  ->  ph )  ->  ( A  e.  B  ->  ps ) ) ) )
151, 14syl7bi 164 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ( A  e.  B  ->  ps ) ) ) )
1615com34 83 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A  e.  B  -> 
( A. x  e.  B  ph  ->  ps ) ) ) )
1716pm2.43d 50 1  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  sumdc2  13680
  Copyright terms: Public domain W3C validator