Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbid | Unicode version |
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abbid.1 | |
abbid.2 |
Ref | Expression |
---|---|
abbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 | |
2 | abbid.2 | . . 3 | |
3 | 1, 2 | alrimi 1510 | . 2 |
4 | abbi 2280 | . 2 | |
5 | 3, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wnf 1448 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 |
This theorem is referenced by: abbidv 2284 rabeqf 2716 sbcbid 3008 |
Copyright terms: Public domain | W3C validator |