ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbid Unicode version

Theorem abbid 2287
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1  |-  F/ x ph
abbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
abbid  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3  |-  F/ x ph
2 abbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimi 1515 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 abbi 2284 . 2  |-  ( A. x ( ps  <->  ch )  <->  { x  |  ps }  =  { x  |  ch } )
53, 4sylib 121 1  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   F/wnf 1453   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163
This theorem is referenced by:  abbidv  2288  rabeqf  2720  sbcbid  3012
  Copyright terms: Public domain W3C validator