Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbid | Unicode version |
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abbid.1 | |
abbid.2 |
Ref | Expression |
---|---|
abbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 | |
2 | abbid.2 | . . 3 | |
3 | 1, 2 | alrimi 1515 | . 2 |
4 | abbi 2284 | . 2 | |
5 | 3, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wnf 1453 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 |
This theorem is referenced by: abbidv 2288 rabeqf 2720 sbcbid 3012 |
Copyright terms: Public domain | W3C validator |