| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbid | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| abbid.1 |
|
| abbid.2 |
|
| Ref | Expression |
|---|---|
| abbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbid.1 |
. . 3
| |
| 2 | abbid.2 |
. . 3
| |
| 3 | 1, 2 | alrimi 1546 |
. 2
|
| 4 | abbi 2321 |
. 2
| |
| 5 | 3, 4 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 |
| This theorem is referenced by: abbidv 2325 rabeqf 2766 sbcbid 3063 |
| Copyright terms: Public domain | W3C validator |