ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbid Unicode version

Theorem abbid 2324
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1  |-  F/ x ph
abbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
abbid  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3  |-  F/ x ph
2 abbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimi 1546 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 abbi 2321 . 2  |-  ( A. x ( ps  <->  ch )  <->  { x  |  ps }  =  { x  |  ch } )
53, 4sylib 122 1  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1484   {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200
This theorem is referenced by:  abbidv  2325  rabeqf  2766  sbcbid  3063
  Copyright terms: Public domain W3C validator