Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 |
Ref | Expression |
---|---|
abbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2284 | . 2 | |
2 | abbii.1 | . 2 | |
3 | 1, 2 | mpgbi 1445 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 |
This theorem is referenced by: rabswap 2648 rabbiia 2715 rabab 2751 csb2 3051 cbvcsbw 3053 cbvcsb 3054 csbid 3057 csbco 3059 csbcow 3060 cbvreucsf 3113 unrab 3398 inrab 3399 inrab2 3400 difrab 3401 rabun2 3406 dfnul3 3417 rab0 3443 tprot 3676 pw0 3727 dfuni2 3798 unipr 3810 dfint2 3833 int0 3845 dfiunv2 3909 cbviun 3910 cbviin 3911 iunrab 3920 iunid 3928 viin 3932 cbvopab 4060 cbvopab1 4062 cbvopab2 4063 cbvopab1s 4064 cbvopab2v 4066 unopab 4068 iunopab 4266 abnex 4432 uniuni 4436 ruv 4534 rabxp 4648 dfdm3 4798 dfrn2 4799 dfrn3 4800 dfdm4 4803 dfdmf 4804 dmun 4818 dmopab 4822 dmopabss 4823 dmopab3 4824 dfrnf 4852 rnopab 4858 rnmpt 4859 dfima2 4955 dfima3 4956 imadmrn 4963 imai 4967 args 4980 mptpreima 5104 dfiota2 5161 cbviota 5165 sb8iota 5167 dffv4g 5493 dfimafn2 5546 fnasrn 5674 fnasrng 5676 elabrex 5737 abrexco 5738 dfoprab2 5900 cbvoprab2 5926 dmoprab 5934 rnoprab 5936 rnoprab2 5937 fnrnov 5998 abrexex2g 6099 abrexex2 6103 abexssex 6104 abexex 6105 oprabrexex2 6109 dfopab2 6168 cnvoprab 6213 tfr1onlemaccex 6327 tfrcllemaccex 6340 tfrcldm 6342 frec0g 6376 frecsuc 6386 snec 6574 pmex 6631 dfixp 6678 cbvixp 6693 caucvgprprlemmu 7657 caucvgsr 7764 pitonnlem1 7807 mertenslem2 11499 toponsspwpwg 12814 tgval2 12845 if0ab 13840 bdcuni 13911 bj-dfom 13968 |
Copyright terms: Public domain | W3C validator |