| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| abbii.1 | 
 | 
| Ref | Expression | 
|---|---|
| abbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abbi 2310 | 
. 2
 | |
| 2 | abbii.1 | 
. 2
 | |
| 3 | 1, 2 | mpgbi 1466 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 | 
| This theorem is referenced by: rabswap 2676 rabbiia 2748 rabab 2784 csb2 3086 cbvcsbw 3088 cbvcsb 3089 csbid 3092 csbco 3094 csbcow 3095 cbvreucsf 3149 unrab 3434 inrab 3435 inrab2 3436 difrab 3437 rabun2 3442 dfnul3 3453 rab0 3479 tprot 3715 pw0 3769 dfuni2 3841 unipr 3853 dfint2 3876 int0 3888 dfiunv2 3952 cbviun 3953 cbviin 3954 iunrab 3964 iunid 3972 viin 3976 cbvopab 4104 cbvopab1 4106 cbvopab2 4107 cbvopab1s 4108 cbvopab2v 4110 unopab 4112 iunopab 4316 abnex 4482 uniuni 4486 ruv 4586 rabxp 4700 dfdm3 4853 dfrn2 4854 dfrn3 4855 dfdm4 4858 dfdmf 4859 dmun 4873 dmopab 4877 dmopabss 4878 dmopab3 4879 dfrnf 4907 rnopab 4913 rnmpt 4914 dfima2 5011 dfima3 5012 imadmrn 5019 imai 5025 args 5038 mptpreima 5163 dfiota2 5220 cbviota 5224 sb8iota 5226 dffv4g 5555 dfimafn2 5610 fnasrn 5740 fnasrng 5742 elabrex 5804 elabrexg 5805 abrexco 5806 dfoprab2 5969 cbvoprab2 5995 dmoprab 6003 rnoprab 6005 rnoprab2 6006 fnrnov 6069 abrexex2g 6177 abrexex2 6181 abexssex 6182 abexex 6183 oprabrexex2 6187 dfopab2 6247 cnvoprab 6292 tfr1onlemaccex 6406 tfrcllemaccex 6419 tfrcldm 6421 frec0g 6455 frecsuc 6465 snec 6655 pmex 6712 dfixp 6759 cbvixp 6774 caucvgprprlemmu 7762 caucvgsr 7869 pitonnlem1 7912 mertenslem2 11701 4sqlemafi 12564 dfrhm2 13710 toponsspwpwg 14258 tgval2 14287 2lgslem1b 15330 if0ab 15451 bdcuni 15522 bj-dfom 15579 | 
| Copyright terms: Public domain | W3C validator |