| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2310 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1466 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: rabswap 2676 rabbiia 2748 rabab 2784 csb2 3086 cbvcsbw 3088 cbvcsb 3089 csbid 3092 csbco 3094 csbcow 3095 cbvreucsf 3149 unrab 3435 inrab 3436 inrab2 3437 difrab 3438 rabun2 3443 dfnul3 3454 rab0 3480 tprot 3716 pw0 3770 dfuni2 3842 unipr 3854 dfint2 3877 int0 3889 dfiunv2 3953 cbviun 3954 cbviin 3955 iunrab 3965 iunid 3973 viin 3977 cbvopab 4105 cbvopab1 4107 cbvopab2 4108 cbvopab1s 4109 cbvopab2v 4111 unopab 4113 iunopab 4317 abnex 4483 uniuni 4487 ruv 4587 rabxp 4701 dfdm3 4854 dfrn2 4855 dfrn3 4856 dfdm4 4859 dfdmf 4860 dmun 4874 dmopab 4878 dmopabss 4879 dmopab3 4880 dfrnf 4908 rnopab 4914 rnmpt 4915 dfima2 5012 dfima3 5013 imadmrn 5020 imai 5026 args 5039 mptpreima 5164 dfiota2 5221 cbviota 5225 sb8iota 5227 dffv4g 5556 dfimafn2 5611 fnasrn 5741 fnasrng 5743 elabrex 5805 elabrexg 5806 abrexco 5807 dfoprab2 5970 cbvoprab2 5996 dmoprab 6004 rnoprab 6006 rnoprab2 6007 fnrnov 6070 abrexex2g 6178 abrexex2 6182 abexssex 6183 abexex 6184 oprabrexex2 6188 dfopab2 6248 cnvoprab 6293 tfr1onlemaccex 6407 tfrcllemaccex 6420 tfrcldm 6422 frec0g 6456 frecsuc 6466 snec 6656 pmex 6713 dfixp 6760 cbvixp 6775 caucvgprprlemmu 7764 caucvgsr 7871 pitonnlem1 7914 mertenslem2 11703 4sqlemafi 12574 dfrhm2 13720 toponsspwpwg 14268 tgval2 14297 2lgslem1b 15340 if0ab 15461 bdcuni 15532 bj-dfom 15589 |
| Copyright terms: Public domain | W3C validator |