Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 |
Ref | Expression |
---|---|
abbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2289 | . 2 | |
2 | abbii.1 | . 2 | |
3 | 1, 2 | mpgbi 1450 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 |
This theorem is referenced by: rabswap 2653 rabbiia 2720 rabab 2756 csb2 3057 cbvcsbw 3059 cbvcsb 3060 csbid 3063 csbco 3065 csbcow 3066 cbvreucsf 3119 unrab 3404 inrab 3405 inrab2 3406 difrab 3407 rabun2 3412 dfnul3 3423 rab0 3449 tprot 3682 pw0 3736 dfuni2 3807 unipr 3819 dfint2 3842 int0 3854 dfiunv2 3918 cbviun 3919 cbviin 3920 iunrab 3929 iunid 3937 viin 3941 cbvopab 4069 cbvopab1 4071 cbvopab2 4072 cbvopab1s 4073 cbvopab2v 4075 unopab 4077 iunopab 4275 abnex 4441 uniuni 4445 ruv 4543 rabxp 4657 dfdm3 4807 dfrn2 4808 dfrn3 4809 dfdm4 4812 dfdmf 4813 dmun 4827 dmopab 4831 dmopabss 4832 dmopab3 4833 dfrnf 4861 rnopab 4867 rnmpt 4868 dfima2 4965 dfima3 4966 imadmrn 4973 imai 4977 args 4990 mptpreima 5114 dfiota2 5171 cbviota 5175 sb8iota 5177 dffv4g 5504 dfimafn2 5557 fnasrn 5686 fnasrng 5688 elabrex 5749 abrexco 5750 dfoprab2 5912 cbvoprab2 5938 dmoprab 5946 rnoprab 5948 rnoprab2 5949 fnrnov 6010 abrexex2g 6111 abrexex2 6115 abexssex 6116 abexex 6117 oprabrexex2 6121 dfopab2 6180 cnvoprab 6225 tfr1onlemaccex 6339 tfrcllemaccex 6352 tfrcldm 6354 frec0g 6388 frecsuc 6398 snec 6586 pmex 6643 dfixp 6690 cbvixp 6705 caucvgprprlemmu 7669 caucvgsr 7776 pitonnlem1 7819 mertenslem2 11512 toponsspwpwg 13100 tgval2 13131 if0ab 14126 bdcuni 14197 bj-dfom 14254 |
Copyright terms: Public domain | W3C validator |