Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 |
Ref | Expression |
---|---|
abbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2280 | . 2 | |
2 | abbii.1 | . 2 | |
3 | 1, 2 | mpgbi 1440 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 |
This theorem is referenced by: rabswap 2644 rabbiia 2711 rabab 2747 csb2 3047 cbvcsbw 3049 cbvcsb 3050 csbid 3053 csbco 3055 csbcow 3056 cbvreucsf 3109 unrab 3393 inrab 3394 inrab2 3395 difrab 3396 rabun2 3401 dfnul3 3412 rab0 3437 tprot 3669 pw0 3720 dfuni2 3791 unipr 3803 dfint2 3826 int0 3838 dfiunv2 3902 cbviun 3903 cbviin 3904 iunrab 3913 iunid 3921 viin 3925 cbvopab 4053 cbvopab1 4055 cbvopab2 4056 cbvopab1s 4057 cbvopab2v 4059 unopab 4061 iunopab 4259 abnex 4425 uniuni 4429 ruv 4527 rabxp 4641 dfdm3 4791 dfrn2 4792 dfrn3 4793 dfdm4 4796 dfdmf 4797 dmun 4811 dmopab 4815 dmopabss 4816 dmopab3 4817 dfrnf 4845 rnopab 4851 rnmpt 4852 dfima2 4948 dfima3 4949 imadmrn 4956 imai 4960 args 4973 mptpreima 5097 dfiota2 5154 cbviota 5158 sb8iota 5160 dffv4g 5483 dfimafn2 5536 fnasrn 5663 fnasrng 5665 elabrex 5726 abrexco 5727 dfoprab2 5889 cbvoprab2 5915 dmoprab 5923 rnoprab 5925 rnoprab2 5926 fnrnov 5987 abrexex2g 6088 abrexex2 6092 abexssex 6093 abexex 6094 oprabrexex2 6098 dfopab2 6157 cnvoprab 6202 tfr1onlemaccex 6316 tfrcllemaccex 6329 tfrcldm 6331 frec0g 6365 frecsuc 6375 snec 6562 pmex 6619 dfixp 6666 cbvixp 6681 caucvgprprlemmu 7636 caucvgsr 7743 pitonnlem1 7786 mertenslem2 11477 toponsspwpwg 12660 tgval2 12691 if0ab 13687 bdcuni 13758 bj-dfom 13815 |
Copyright terms: Public domain | W3C validator |