| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2321 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 |
| This theorem is referenced by: rabswap 2687 rabbiia 2761 rabab 2798 csb2 3103 cbvcsbw 3105 cbvcsb 3106 csbid 3109 csbco 3111 csbcow 3112 cbvreucsf 3166 unrab 3452 inrab 3453 inrab2 3454 difrab 3455 rabun2 3460 dfnul3 3471 rab0 3497 tprot 3736 pw0 3791 dfuni2 3866 unipr 3878 dfint2 3901 int0 3913 dfiunv2 3977 cbviun 3978 cbviin 3979 iunrab 3989 iunid 3997 viin 4001 cbvopab 4131 cbvopab1 4133 cbvopab2 4134 cbvopab1s 4135 cbvopab2v 4137 unopab 4139 iunopab 4346 abnex 4512 uniuni 4516 ruv 4616 rabxp 4730 dfdm3 4883 dfrn2 4884 dfrn3 4885 dfdm4 4889 dfdmf 4890 dmun 4904 dmopab 4908 dmopabss 4909 dmopab3 4910 dfrnf 4938 rnopab 4944 rnmpt 4945 dfima2 5043 dfima3 5044 imadmrn 5051 imai 5057 args 5070 mptpreima 5195 dfiota2 5252 cbviota 5256 sb8iota 5258 dffv4g 5596 dfimafn2 5651 fnasrn 5781 fnasrng 5783 elabrex 5849 elabrexg 5850 abrexco 5851 dfoprab2 6015 cbvoprab2 6041 dmoprab 6049 rnoprab 6051 rnoprab2 6052 fnrnov 6115 abrexex2g 6228 abrexex2 6232 abexssex 6233 abexex 6234 oprabrexex2 6238 dfopab2 6298 cnvoprab 6343 tfr1onlemaccex 6457 tfrcllemaccex 6470 tfrcldm 6472 frec0g 6506 frecsuc 6516 snec 6706 pmex 6763 dfixp 6810 cbvixp 6825 caucvgprprlemmu 7843 caucvgsr 7950 pitonnlem1 7993 mertenslem2 11962 4sqlemafi 12833 dfrhm2 14031 toponsspwpwg 14609 tgval2 14638 2lgslem1b 15681 if0ab 15941 bdcuni 16011 bj-dfom 16068 |
| Copyright terms: Public domain | W3C validator |