| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2310 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1466 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: rabswap 2676 rabbiia 2748 rabab 2784 csb2 3086 cbvcsbw 3088 cbvcsb 3089 csbid 3092 csbco 3094 csbcow 3095 cbvreucsf 3149 unrab 3435 inrab 3436 inrab2 3437 difrab 3438 rabun2 3443 dfnul3 3454 rab0 3480 tprot 3716 pw0 3770 dfuni2 3842 unipr 3854 dfint2 3877 int0 3889 dfiunv2 3953 cbviun 3954 cbviin 3955 iunrab 3965 iunid 3973 viin 3977 cbvopab 4105 cbvopab1 4107 cbvopab2 4108 cbvopab1s 4109 cbvopab2v 4111 unopab 4113 iunopab 4317 abnex 4483 uniuni 4487 ruv 4587 rabxp 4701 dfdm3 4854 dfrn2 4855 dfrn3 4856 dfdm4 4859 dfdmf 4860 dmun 4874 dmopab 4878 dmopabss 4879 dmopab3 4880 dfrnf 4908 rnopab 4914 rnmpt 4915 dfima2 5012 dfima3 5013 imadmrn 5020 imai 5026 args 5039 mptpreima 5164 dfiota2 5221 cbviota 5225 sb8iota 5227 dffv4g 5558 dfimafn2 5613 fnasrn 5743 fnasrng 5745 elabrex 5807 elabrexg 5808 abrexco 5809 dfoprab2 5973 cbvoprab2 5999 dmoprab 6007 rnoprab 6009 rnoprab2 6010 fnrnov 6073 abrexex2g 6186 abrexex2 6190 abexssex 6191 abexex 6192 oprabrexex2 6196 dfopab2 6256 cnvoprab 6301 tfr1onlemaccex 6415 tfrcllemaccex 6428 tfrcldm 6430 frec0g 6464 frecsuc 6474 snec 6664 pmex 6721 dfixp 6768 cbvixp 6783 caucvgprprlemmu 7779 caucvgsr 7886 pitonnlem1 7929 mertenslem2 11718 4sqlemafi 12589 dfrhm2 13786 toponsspwpwg 14342 tgval2 14371 2lgslem1b 15414 if0ab 15535 bdcuni 15606 bj-dfom 15663 |
| Copyright terms: Public domain | W3C validator |