| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2343 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 |
| This theorem is referenced by: rabswap 2710 rabbiia 2784 rabab 2821 csb2 3126 cbvcsbw 3128 cbvcsb 3129 csbid 3132 csbco 3134 csbcow 3135 cbvreucsf 3189 unrab 3475 inrab 3476 inrab2 3477 difrab 3478 rabun2 3483 dfnul3 3494 rab0 3520 tprot 3759 pw0 3815 dfuni2 3890 unipr 3902 dfint2 3925 int0 3937 dfiunv2 4001 cbviun 4002 cbviin 4003 iunrab 4013 iunid 4021 viin 4025 cbvopab 4155 cbvopab1 4157 cbvopab2 4158 cbvopab1s 4159 cbvopab2v 4161 unopab 4163 iunopab 4370 abnex 4538 uniuni 4542 ruv 4642 rabxp 4756 dfdm3 4909 dfrn2 4910 dfrn3 4911 dfdm4 4915 dfdmf 4916 dmun 4930 dmopab 4934 dmopabss 4935 dmopab3 4936 dfrnf 4965 rnopab 4971 rnmpt 4972 dfima2 5070 dfima3 5071 imadmrn 5078 imai 5084 args 5097 mptpreima 5222 dfiota2 5279 cbviota 5283 cbviotavw 5284 sb8iota 5286 dffv4g 5624 dfimafn2 5683 fnasrn 5813 fnasrng 5815 elabrex 5881 elabrexg 5882 abrexco 5883 dfoprab2 6051 cbvoprab2 6077 dmoprab 6085 rnoprab 6087 rnoprab2 6088 fnrnov 6151 abrexex2g 6265 abrexex2 6269 abexssex 6270 abexex 6271 oprabrexex2 6275 dfopab2 6335 cnvoprab 6380 tfr1onlemaccex 6494 tfrcllemaccex 6507 tfrcldm 6509 frec0g 6543 frecsuc 6553 snec 6743 pmex 6800 dfixp 6847 cbvixp 6862 caucvgprprlemmu 7882 caucvgsr 7989 pitonnlem1 8032 mertenslem2 12047 4sqlemafi 12918 dfrhm2 14118 toponsspwpwg 14696 tgval2 14725 2lgslem1b 15768 if0ab 16169 bdcuni 16239 bj-dfom 16296 |
| Copyright terms: Public domain | W3C validator |