| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2319 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 |
| This theorem is referenced by: rabswap 2685 rabbiia 2757 rabab 2793 csb2 3095 cbvcsbw 3097 cbvcsb 3098 csbid 3101 csbco 3103 csbcow 3104 cbvreucsf 3158 unrab 3444 inrab 3445 inrab2 3446 difrab 3447 rabun2 3452 dfnul3 3463 rab0 3489 tprot 3726 pw0 3780 dfuni2 3852 unipr 3864 dfint2 3887 int0 3899 dfiunv2 3963 cbviun 3964 cbviin 3965 iunrab 3975 iunid 3983 viin 3987 cbvopab 4115 cbvopab1 4117 cbvopab2 4118 cbvopab1s 4119 cbvopab2v 4121 unopab 4123 iunopab 4328 abnex 4494 uniuni 4498 ruv 4598 rabxp 4712 dfdm3 4865 dfrn2 4866 dfrn3 4867 dfdm4 4870 dfdmf 4871 dmun 4885 dmopab 4889 dmopabss 4890 dmopab3 4891 dfrnf 4919 rnopab 4925 rnmpt 4926 dfima2 5024 dfima3 5025 imadmrn 5032 imai 5038 args 5051 mptpreima 5176 dfiota2 5233 cbviota 5237 sb8iota 5239 dffv4g 5573 dfimafn2 5628 fnasrn 5758 fnasrng 5760 elabrex 5826 elabrexg 5827 abrexco 5828 dfoprab2 5992 cbvoprab2 6018 dmoprab 6026 rnoprab 6028 rnoprab2 6029 fnrnov 6092 abrexex2g 6205 abrexex2 6209 abexssex 6210 abexex 6211 oprabrexex2 6215 dfopab2 6275 cnvoprab 6320 tfr1onlemaccex 6434 tfrcllemaccex 6447 tfrcldm 6449 frec0g 6483 frecsuc 6493 snec 6683 pmex 6740 dfixp 6787 cbvixp 6802 caucvgprprlemmu 7808 caucvgsr 7915 pitonnlem1 7958 mertenslem2 11847 4sqlemafi 12718 dfrhm2 13916 toponsspwpwg 14494 tgval2 14523 2lgslem1b 15566 if0ab 15745 bdcuni 15816 bj-dfom 15873 |
| Copyright terms: Public domain | W3C validator |