| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 |
|
| Ref | Expression |
|---|---|
| abbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2319 |
. 2
| |
| 2 | abbii.1 |
. 2
| |
| 3 | 1, 2 | mpgbi 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 |
| This theorem is referenced by: rabswap 2685 rabbiia 2757 rabab 2793 csb2 3095 cbvcsbw 3097 cbvcsb 3098 csbid 3101 csbco 3103 csbcow 3104 cbvreucsf 3158 unrab 3444 inrab 3445 inrab2 3446 difrab 3447 rabun2 3452 dfnul3 3463 rab0 3489 tprot 3726 pw0 3780 dfuni2 3852 unipr 3864 dfint2 3887 int0 3899 dfiunv2 3963 cbviun 3964 cbviin 3965 iunrab 3975 iunid 3983 viin 3987 cbvopab 4116 cbvopab1 4118 cbvopab2 4119 cbvopab1s 4120 cbvopab2v 4122 unopab 4124 iunopab 4329 abnex 4495 uniuni 4499 ruv 4599 rabxp 4713 dfdm3 4866 dfrn2 4867 dfrn3 4868 dfdm4 4871 dfdmf 4872 dmun 4886 dmopab 4890 dmopabss 4891 dmopab3 4892 dfrnf 4920 rnopab 4926 rnmpt 4927 dfima2 5025 dfima3 5026 imadmrn 5033 imai 5039 args 5052 mptpreima 5177 dfiota2 5234 cbviota 5238 sb8iota 5240 dffv4g 5575 dfimafn2 5630 fnasrn 5760 fnasrng 5762 elabrex 5828 elabrexg 5829 abrexco 5830 dfoprab2 5994 cbvoprab2 6020 dmoprab 6028 rnoprab 6030 rnoprab2 6031 fnrnov 6094 abrexex2g 6207 abrexex2 6211 abexssex 6212 abexex 6213 oprabrexex2 6217 dfopab2 6277 cnvoprab 6322 tfr1onlemaccex 6436 tfrcllemaccex 6449 tfrcldm 6451 frec0g 6485 frecsuc 6495 snec 6685 pmex 6742 dfixp 6789 cbvixp 6804 caucvgprprlemmu 7810 caucvgsr 7917 pitonnlem1 7960 mertenslem2 11880 4sqlemafi 12751 dfrhm2 13949 toponsspwpwg 14527 tgval2 14556 2lgslem1b 15599 if0ab 15778 bdcuni 15849 bj-dfom 15906 |
| Copyright terms: Public domain | W3C validator |