ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqf Unicode version

Theorem rabeqf 2716
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1  |-  F/_ x A
rabeqf.2  |-  F/_ x B
Assertion
Ref Expression
rabeqf  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4  |-  F/_ x A
2 rabeqf.2 . . . 4  |-  F/_ x B
31, 2nfeq 2316 . . 3  |-  F/ x  A  =  B
4 eleq2 2230 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
54anbi1d 461 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ph )
) )
63, 5abbid 2283 . 2  |-  ( A  =  B  ->  { x  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  B  /\  ph ) } )
7 df-rab 2453 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
8 df-rab 2453 . 2  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
96, 7, 83eqtr4g 2224 1  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   F/_wnfc 2295   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453
This theorem is referenced by:  rabeqif  2717  rabeq  2718
  Copyright terms: Public domain W3C validator