| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbid | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| abbid.1 | ⊢ Ⅎ𝑥𝜑 |
| abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | abbi 2310 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) ↔ {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
| 5 | 3, 4 | sylib 122 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: abbidv 2314 rabeqf 2753 sbcbid 3047 |
| Copyright terms: Public domain | W3C validator |