![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbid | GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abbid.1 | ⊢ Ⅎ𝑥𝜑 |
abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimi 1533 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | abbi 2303 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) ↔ {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
5 | 3, 4 | sylib 122 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1471 {cab 2175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 |
This theorem is referenced by: abbidv 2307 rabeqf 2742 sbcbid 3035 |
Copyright terms: Public domain | W3C validator |