ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbid GIF version

Theorem abbid 2306
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1 𝑥𝜑
abbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
abbid (𝜑 → {𝑥𝜓} = {𝑥𝜒})

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3 𝑥𝜑
2 abbid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 1533 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 abbi 2303 . 2 (∀𝑥(𝜓𝜒) ↔ {𝑥𝜓} = {𝑥𝜒})
53, 4sylib 122 1 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  {cab 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182
This theorem is referenced by:  abbidv  2307  rabeqf  2742  sbcbid  3035
  Copyright terms: Public domain W3C validator