ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbid Unicode version

Theorem sbcbid 3008
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcbid.1  |-  F/ x ph
sbcbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbcbid  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )

Proof of Theorem sbcbid
StepHypRef Expression
1 sbcbid.1 . . . 4  |-  F/ x ph
2 sbcbid.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2abbid 2283 . . 3  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
43eleq2d 2236 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  A  e.  { x  |  ch } ) )
5 df-sbc 2952 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
6 df-sbc 2952 . 2  |-  ( [. A  /  x ]. ch  <->  A  e.  { x  |  ch } )
74, 5, 63bitr4g 222 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448    e. wcel 2136   {cab 2151   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by:  sbcbidv  3009  csbeq2d  3070  bezoutlemstep  11930
  Copyright terms: Public domain W3C validator