Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbid | Unicode version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbid.1 | |
sbcbid.2 |
Ref | Expression |
---|---|
sbcbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbid.1 | . . . 4 | |
2 | sbcbid.2 | . . . 4 | |
3 | 1, 2 | abbid 2271 | . . 3 |
4 | 3 | eleq2d 2224 | . 2 |
5 | df-sbc 2934 | . 2 | |
6 | df-sbc 2934 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wnf 1437 wcel 2125 cab 2140 wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-sbc 2934 |
This theorem is referenced by: sbcbidv 2991 csbeq2d 3052 bezoutlemstep 11852 |
Copyright terms: Public domain | W3C validator |