ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbid Unicode version

Theorem sbcbid 3086
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcbid.1  |-  F/ x ph
sbcbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbcbid  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )

Proof of Theorem sbcbid
StepHypRef Expression
1 sbcbid.1 . . . 4  |-  F/ x ph
2 sbcbid.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2abbid 2346 . . 3  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
43eleq2d 2299 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  A  e.  { x  |  ch } ) )
5 df-sbc 3029 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
6 df-sbc 3029 . 2  |-  ( [. A  /  x ]. ch  <->  A  e.  { x  |  ch } )
74, 5, 63bitr4g 223 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1506    e. wcel 2200   {cab 2215   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-sbc 3029
This theorem is referenced by:  sbcbidv  3087  csbeq2d  3149  bezoutlemstep  12518
  Copyright terms: Public domain W3C validator