ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrpd Unicode version

Theorem ablgrpd 13597
Description: An Abelian group is a group, deduction form of ablgrp 13596. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1  |-  ( ph  ->  G  e.  Abel )
Assertion
Ref Expression
ablgrpd  |-  ( ph  ->  G  e.  Grp )

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 13596 . 2  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 14 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   Grpcgrp 13303   Abelcabl 13592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-abl 13594
This theorem is referenced by:  imasabl  13643  rnggrp  13671
  Copyright terms: Public domain W3C validator