| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ablgrp | Unicode version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| ablgrp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isabl 13418 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-abl 13417 | 
| This theorem is referenced by: ablgrpd 13420 ablinvadd 13440 ablsub2inv 13441 ablsubadd 13442 ablsub4 13443 abladdsub4 13444 abladdsub 13445 ablpncan2 13446 ablpncan3 13447 ablsubsub 13448 ablsubsub4 13449 ablpnpcan 13450 ablnncan 13451 ablnnncan 13453 ablnnncan1 13454 ablsubsub23 13455 ghmabl 13458 invghm 13459 eqgabl 13460 ablressid 13465 rnglz 13501 rngpropd 13511 | 
| Copyright terms: Public domain | W3C validator |