ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrp Unicode version

Theorem ablgrp 13359
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
Assertion
Ref Expression
ablgrp  |-  ( G  e.  Abel  ->  G  e. 
Grp )

Proof of Theorem ablgrp
StepHypRef Expression
1 isabl 13358 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
21simplbi 274 1  |-  ( G  e.  Abel  ->  G  e. 
Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   Grpcgrp 13072  CMndccmn 13354   Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-abl 13357
This theorem is referenced by:  ablgrpd  13360  ablinvadd  13380  ablsub2inv  13381  ablsubadd  13382  ablsub4  13383  abladdsub4  13384  abladdsub  13385  ablpncan2  13386  ablpncan3  13387  ablsubsub  13388  ablsubsub4  13389  ablpnpcan  13390  ablnncan  13391  ablnnncan  13393  ablnnncan1  13394  ablsubsub23  13395  ghmabl  13398  invghm  13399  eqgabl  13400  ablressid  13405  rnglz  13441  rngpropd  13451
  Copyright terms: Public domain W3C validator