| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrp | Unicode version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13566 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-abl 13565 |
| This theorem is referenced by: ablgrpd 13568 ablinvadd 13588 ablsub2inv 13589 ablsubadd 13590 ablsub4 13591 abladdsub4 13592 abladdsub 13593 ablpncan2 13594 ablpncan3 13595 ablsubsub 13596 ablsubsub4 13597 ablpnpcan 13598 ablnncan 13599 ablnnncan 13601 ablnnncan1 13602 ablsubsub23 13603 ghmabl 13606 invghm 13607 eqgabl 13608 ablressid 13613 rnglz 13649 rngpropd 13659 |
| Copyright terms: Public domain | W3C validator |