| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrp | Unicode version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13820 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-abl 13819 |
| This theorem is referenced by: ablgrpd 13822 ablinvadd 13842 ablsub2inv 13843 ablsubadd 13844 ablsub4 13845 abladdsub4 13846 abladdsub 13847 ablpncan2 13848 ablpncan3 13849 ablsubsub 13850 ablsubsub4 13851 ablpnpcan 13852 ablnncan 13853 ablnnncan 13855 ablnnncan1 13856 ablsubsub23 13857 ghmabl 13860 invghm 13861 eqgabl 13862 ablressid 13867 rnglz 13903 rngpropd 13913 |
| Copyright terms: Public domain | W3C validator |