| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrp | Unicode version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13699 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-abl 13698 |
| This theorem is referenced by: ablgrpd 13701 ablinvadd 13721 ablsub2inv 13722 ablsubadd 13723 ablsub4 13724 abladdsub4 13725 abladdsub 13726 ablpncan2 13727 ablpncan3 13728 ablsubsub 13729 ablsubsub4 13730 ablpnpcan 13731 ablnncan 13732 ablnnncan 13734 ablnnncan1 13735 ablsubsub23 13736 ghmabl 13739 invghm 13740 eqgabl 13741 ablressid 13746 rnglz 13782 rngpropd 13792 |
| Copyright terms: Public domain | W3C validator |