ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrp Unicode version

Theorem ablgrp 13362
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
Assertion
Ref Expression
ablgrp  |-  ( G  e.  Abel  ->  G  e. 
Grp )

Proof of Theorem ablgrp
StepHypRef Expression
1 isabl 13361 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
21simplbi 274 1  |-  ( G  e.  Abel  ->  G  e. 
Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   Grpcgrp 13075  CMndccmn 13357   Abelcabl 13358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-abl 13360
This theorem is referenced by:  ablgrpd  13363  ablinvadd  13383  ablsub2inv  13384  ablsubadd  13385  ablsub4  13386  abladdsub4  13387  abladdsub  13388  ablpncan2  13389  ablpncan3  13390  ablsubsub  13391  ablsubsub4  13392  ablpnpcan  13393  ablnncan  13394  ablnnncan  13396  ablnnncan1  13397  ablsubsub23  13398  ghmabl  13401  invghm  13402  eqgabl  13403  ablressid  13408  rnglz  13444  rngpropd  13454
  Copyright terms: Public domain W3C validator