ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrpd GIF version

Theorem ablgrpd 12890
Description: An Abelian group is a group, deduction form of ablgrp 12889. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 12889 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 14 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2146  Grpcgrp 12738  Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-abl 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator