ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrpd GIF version

Theorem ablgrpd 13793
Description: An Abelian group is a group, deduction form of ablgrp 13792. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 13792 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 14 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Grpcgrp 13499  Abelcabl 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-abl 13790
This theorem is referenced by:  imasabl  13839  rnggrp  13867
  Copyright terms: Public domain W3C validator