| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrpd | GIF version | ||
| Description: An Abelian group is a group, deduction form of ablgrp 13669. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| ablgrpd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ablgrpd | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrpd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablgrp 13669 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Grpcgrp 13376 Abelcabl 13665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-abl 13667 |
| This theorem is referenced by: imasabl 13716 rnggrp 13744 |
| Copyright terms: Public domain | W3C validator |