ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablgrpd GIF version

Theorem ablgrpd 13670
Description: An Abelian group is a group, deduction form of ablgrp 13669. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
ablgrpd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablgrpd (𝜑𝐺 ∈ Grp)

Proof of Theorem ablgrpd
StepHypRef Expression
1 ablgrpd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablgrp 13669 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 14 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Grpcgrp 13376  Abelcabl 13665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-abl 13667
This theorem is referenced by:  imasabl  13716  rnggrp  13744
  Copyright terms: Public domain W3C validator