ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcmn Unicode version

Theorem ablcmn 13828
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
ablcmn  |-  ( G  e.  Abel  ->  G  e. CMnd
)

Proof of Theorem ablcmn
StepHypRef Expression
1 isabl 13825 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
21simprbi 275 1  |-  ( G  e.  Abel  ->  G  e. CMnd
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   Grpcgrp 13533  CMndccmn 13821   Abelcabl 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-abl 13824
This theorem is referenced by:  ablcmnd  13829  ablcom  13840  abl32  13844  ablsub4  13850  ghmabl  13865  ringcmn  13996  lmodcmn  14299  lgseisenlem4  15752
  Copyright terms: Public domain W3C validator