ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssext Unicode version

Theorem ssext 4223
Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssext  |-  ( A  =  B  <->  A. x
( x  C_  A  <->  x 
C_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ssext
StepHypRef Expression
1 ssextss 4222 . . 3  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
2 ssextss 4222 . . 3  |-  ( B 
C_  A  <->  A. x
( x  C_  B  ->  x  C_  A )
)
31, 2anbi12i 460 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x ( x  C_  A  ->  x  C_  B
)  /\  A. x
( x  C_  B  ->  x  C_  A )
) )
4 eqss 3172 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 albiim 1487 . 2  |-  ( A. x ( x  C_  A 
<->  x  C_  B )  <->  ( A. x ( x 
C_  A  ->  x  C_  B )  /\  A. x ( x  C_  B  ->  x  C_  A
) ) )
63, 4, 53bitr4i 212 1  |-  ( A  =  B  <->  A. x
( x  C_  A  <->  x 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator