ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem6 Unicode version

Theorem 2sqlem6 15361
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem6.1  |-  ( ph  ->  A  e.  NN )
2sqlem6.2  |-  ( ph  ->  B  e.  NN )
2sqlem6.3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
2sqlem6.4  |-  ( ph  ->  ( A  x.  B
)  e.  S )
Assertion
Ref Expression
2sqlem6  |-  ( ph  ->  A  e.  S )
Distinct variable groups:    w, p    ph, p    B, p    S, p
Allowed substitution hints:    ph( w)    A( w, p)    B( w)    S( w)

Proof of Theorem 2sqlem6
Dummy variables  n  x  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2  |-  ( ph  ->  A  e.  NN )
2 2sqlem6.2 . . 3  |-  ( ph  ->  B  e.  NN )
3 2sqlem6.3 . . 3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
4 breq2 4037 . . . . . . 7  |-  ( x  =  1  ->  (
p  ||  x  <->  p  ||  1
) )
54imbi1d 231 . . . . . 6  |-  ( x  =  1  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  1  ->  p  e.  S ) ) )
65ralbidv 2497 . . . . 5  |-  ( x  =  1  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  1  ->  p  e.  S ) ) )
7 oveq2 5930 . . . . . . . 8  |-  ( x  =  1  ->  (
m  x.  x )  =  ( m  x.  1 ) )
87eleq1d 2265 . . . . . . 7  |-  ( x  =  1  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  1 )  e.  S
) )
98imbi1d 231 . . . . . 6  |-  ( x  =  1  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
109ralbidv 2497 . . . . 5  |-  ( x  =  1  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
116, 10imbi12d 234 . . . 4  |-  ( x  =  1  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  1  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) ) )
12 breq2 4037 . . . . . . 7  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
1312imbi1d 231 . . . . . 6  |-  ( x  =  y  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  y  ->  p  e.  S ) ) )
1413ralbidv 2497 . . . . 5  |-  ( x  =  y  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  y  ->  p  e.  S ) ) )
15 oveq2 5930 . . . . . . . 8  |-  ( x  =  y  ->  (
m  x.  x )  =  ( m  x.  y ) )
1615eleq1d 2265 . . . . . . 7  |-  ( x  =  y  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  y )  e.  S
) )
1716imbi1d 231 . . . . . 6  |-  ( x  =  y  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1817ralbidv 2497 . . . . 5  |-  ( x  =  y  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1914, 18imbi12d 234 . . . 4  |-  ( x  =  y  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) ) )
20 breq2 4037 . . . . . . 7  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
2120imbi1d 231 . . . . . 6  |-  ( x  =  z  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  z  ->  p  e.  S ) ) )
2221ralbidv 2497 . . . . 5  |-  ( x  =  z  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  z  ->  p  e.  S ) ) )
23 oveq2 5930 . . . . . . . 8  |-  ( x  =  z  ->  (
m  x.  x )  =  ( m  x.  z ) )
2423eleq1d 2265 . . . . . . 7  |-  ( x  =  z  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  z )  e.  S
) )
2524imbi1d 231 . . . . . 6  |-  ( x  =  z  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2625ralbidv 2497 . . . . 5  |-  ( x  =  z  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2722, 26imbi12d 234 . . . 4  |-  ( x  =  z  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) ) )
28 breq2 4037 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
2928imbi1d 231 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  (
y  x.  z )  ->  p  e.  S
) ) )
3029ralbidv 2497 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) ) )
31 oveq2 5930 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  (
m  x.  x )  =  ( m  x.  ( y  x.  z
) ) )
3231eleq1d 2265 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
3332imbi1d 231 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3433ralbidv 2497 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3530, 34imbi12d 234 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
36 breq2 4037 . . . . . . 7  |-  ( x  =  B  ->  (
p  ||  x  <->  p  ||  B
) )
3736imbi1d 231 . . . . . 6  |-  ( x  =  B  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  B  ->  p  e.  S ) ) )
3837ralbidv 2497 . . . . 5  |-  ( x  =  B  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  B  ->  p  e.  S ) ) )
39 oveq2 5930 . . . . . . . 8  |-  ( x  =  B  ->  (
m  x.  x )  =  ( m  x.  B ) )
4039eleq1d 2265 . . . . . . 7  |-  ( x  =  B  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  B )  e.  S
) )
4140imbi1d 231 . . . . . 6  |-  ( x  =  B  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4241ralbidv 2497 . . . . 5  |-  ( x  =  B  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4338, 42imbi12d 234 . . . 4  |-  ( x  =  B  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) ) )
44 nncn 8998 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  CC )
4544mulridd 8043 . . . . . . . 8  |-  ( m  e.  NN  ->  (
m  x.  1 )  =  m )
4645eleq1d 2265 . . . . . . 7  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  <->  m  e.  S ) )
4746biimpd 144 . . . . . 6  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  ->  m  e.  S )
)
4847rgen 2550 . . . . 5  |-  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S )
4948a1i 9 . . . 4  |-  ( A. p  e.  Prime  ( p 
||  1  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) )
50 breq1 4036 . . . . . . 7  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
51 eleq1 2259 . . . . . . 7  |-  ( p  =  x  ->  (
p  e.  S  <->  x  e.  S ) )
5250, 51imbi12d 234 . . . . . 6  |-  ( p  =  x  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( x  ||  x  ->  x  e.  S ) ) )
5352rspcv 2864 . . . . 5  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  (
x  ||  x  ->  x  e.  S ) ) )
54 prmz 12279 . . . . . . 7  |-  ( x  e.  Prime  ->  x  e.  ZZ )
55 iddvds 11969 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  ||  x )
5654, 55syl 14 . . . . . 6  |-  ( x  e.  Prime  ->  x  ||  x )
57 2sq.1 . . . . . . . . . 10  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
58 simprl 529 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  NN )
59 simpll 527 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  Prime )
60 simprr 531 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  -> 
( m  x.  x
)  e.  S )
61 simplr 528 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  S )
6257, 58, 59, 60, 612sqlem5 15360 . . . . . . . . 9  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  S )
6362expr 375 . . . . . . . 8  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  m  e.  NN )  ->  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6463ralrimiva 2570 . . . . . . 7  |-  ( ( x  e.  Prime  /\  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6564ex 115 . . . . . 6  |-  ( x  e.  Prime  ->  ( x  e.  S  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6656, 65embantd 56 . . . . 5  |-  ( x  e.  Prime  ->  ( ( x  ||  x  ->  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6753, 66syld 45 . . . 4  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
68 anim12 344 . . . . 5  |-  ( ( ( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) ) )
69 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
70 eluzelz 9610 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
7170ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
72 eluzelz 9610 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
7372ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
74 euclemma 12314 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
p  ||  ( y  x.  z )  <->  ( p  ||  y  \/  p  ||  z ) ) )
7569, 71, 73, 74syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  (
y  x.  z )  <-> 
( p  ||  y  \/  p  ||  z ) ) )
7675imbi1d 231 . . . . . . . . . . . 12  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  \/  p  ||  z )  ->  p  e.  S )
) )
77 jaob 711 . . . . . . . . . . . 12  |-  ( ( ( p  ||  y  \/  p  ||  z )  ->  p  e.  S
)  <->  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) )
7876, 77bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S )
) ) )
7978ralbidva 2493 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  A. p  e.  Prime  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) ) )
80 r19.26 2623 . . . . . . . . . 10  |-  ( A. p  e.  Prime  ( ( p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) ) )
8179, 80bitrdi 196 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) ) ) )
8281biimpa 296 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) ) )
83 oveq1 5929 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
m  x.  y )  =  ( n  x.  y ) )
8483eleq1d 2265 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( m  x.  y
)  e.  S  <->  ( n  x.  y )  e.  S
) )
85 eleq1 2259 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  e.  S  <->  n  e.  S ) )
8684, 85imbi12d 234 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( m  x.  y )  e.  S  ->  m  e.  S )  <-> 
( ( n  x.  y )  e.  S  ->  n  e.  S ) ) )
8786cbvralvw 2733 . . . . . . . . . 10  |-  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  <->  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)
8844adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  CC )
89 uzssz 9621 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= ` 
2 )  C_  ZZ
90 zsscn 9334 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  CC
9189, 90sstri 3192 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= ` 
2 )  C_  CC
92 simpll 527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
y  e.  ( ZZ>= ` 
2 ) )
9392ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  ( ZZ>= `  2 )
)
9491, 93sselid 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  CC )
95 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
z  e.  ( ZZ>= ` 
2 ) )
9695ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  ( ZZ>= `  2 )
)
9791, 96sselid 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  CC )
98 mul32 8156 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( ( m  x.  z )  x.  y ) )
99 mulass 8010 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( m  x.  ( y  x.  z
) ) )
10098, 99eqtr3d 2231 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  z
)  x.  y )  =  ( m  x.  ( y  x.  z
) ) )
10188, 94, 97, 100syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  z )  x.  y )  =  ( m  x.  (
y  x.  z ) ) )
102101eleq1d 2265 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
103 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  NN )
104 eluz2nn 9640 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
10596, 104syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  NN )
106103, 105nnmulcld 9039 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( m  x.  z )  e.  NN )
107 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S ) )
108 oveq1 5929 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( m  x.  z )  ->  (
n  x.  y )  =  ( ( m  x.  z )  x.  y ) )
109108eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
( n  x.  y
)  e.  S  <->  ( (
m  x.  z )  x.  y )  e.  S ) )
110 eleq1 2259 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
n  e.  S  <->  ( m  x.  z )  e.  S
) )
111109, 110imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  x.  z )  ->  (
( ( n  x.  y )  e.  S  ->  n  e.  S )  <-> 
( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z
)  e.  S ) ) )
112111rspcv 2864 . . . . . . . . . . . . . 14  |-  ( ( m  x.  z )  e.  NN  ->  ( A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S )  ->  ( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z )  e.  S
) ) )
113106, 107, 112sylc 62 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  ->  (
m  x.  z )  e.  S ) )
114102, 113sylbird 170 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  (
m  x.  z )  e.  S ) )
115114imim1d 75 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  e.  S  ->  m  e.  S )  ->  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
116115ralimdva 2564 . . . . . . . . . 10  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
11787, 116sylan2b 287 . . . . . . . . 9  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
118117expimpd 363 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
)  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
11982, 118embantd 56 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
120119ex 115 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  ->  (
( ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) )  ->  ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
121120com23 78 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) )  ->  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z )  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
12268, 121syl5 32 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
12311, 19, 27, 35, 43, 49, 67, 122prmind 12289 . . 3  |-  ( B  e.  NN  ->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
1242, 3, 123sylc 62 . 2  |-  ( ph  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) )
125 2sqlem6.4 . 2  |-  ( ph  ->  ( A  x.  B
)  e.  S )
126 oveq1 5929 . . . . 5  |-  ( m  =  A  ->  (
m  x.  B )  =  ( A  x.  B ) )
127126eleq1d 2265 . . . 4  |-  ( m  =  A  ->  (
( m  x.  B
)  e.  S  <->  ( A  x.  B )  e.  S
) )
128 eleq1 2259 . . . 4  |-  ( m  =  A  ->  (
m  e.  S  <->  A  e.  S ) )
129127, 128imbi12d 234 . . 3  |-  ( m  =  A  ->  (
( ( m  x.  B )  e.  S  ->  m  e.  S )  <-> 
( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
130129rspcv 2864 . 2  |-  ( A  e.  NN  ->  ( A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S )  ->  ( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
1311, 124, 125, 130syl3c 63 1  |-  ( ph  ->  A  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4033    |-> cmpt 4094   ran crn 4664   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    x. cmul 7884   NNcn 8990   2c2 9041   ZZcz 9326   ZZ>=cuz 9601   ^cexp 10630   abscabs 11162    || cdvds 11952   Primecprime 12275   ZZ[_i]cgz 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-gz 12539
This theorem is referenced by:  2sqlem8  15364
  Copyright terms: Public domain W3C validator