ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsexd Unicode version

Theorem equsexd 1722
Description: Deduction form of equsex 1721. (Contributed by Jim Kingdon, 29-Dec-2017.)
Hypotheses
Ref Expression
equsexd.1  |-  ( ph  ->  A. x ph )
equsexd.2  |-  ( ph  ->  ( ch  ->  A. x ch ) )
equsexd.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
equsexd  |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  <->  ch ) )

Proof of Theorem equsexd
StepHypRef Expression
1 equsexd.1 . . 3  |-  ( ph  ->  A. x ph )
2 equsexd.2 . . 3  |-  ( ph  ->  ( ch  ->  A. x ch ) )
3 equsexd.3 . . . 4  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
4 biimp 117 . . . . 5  |-  ( ( ps  <->  ch )  ->  ( ps  ->  ch ) )
54imim2i 12 . . . 4  |-  ( ( x  =  y  -> 
( ps  <->  ch )
)  ->  ( x  =  y  ->  ( ps 
->  ch ) ) )
6 pm3.31 260 . . . 4  |-  ( ( x  =  y  -> 
( ps  ->  ch ) )  ->  (
( x  =  y  /\  ps )  ->  ch ) )
73, 5, 63syl 17 . . 3  |-  ( ph  ->  ( ( x  =  y  /\  ps )  ->  ch ) )
81, 2, 7exlimd2 1588 . 2  |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  ->  ch )
)
9 a9e 1689 . . . 4  |-  E. x  x  =  y
101a1i 9 . . . . . . . . 9  |-  ( ph  ->  ( ph  ->  A. x ph ) )
1110, 2jca 304 . . . . . . . 8  |-  ( ph  ->  ( ( ph  ->  A. x ph )  /\  ( ch  ->  A. x ch ) ) )
12 anim12 342 . . . . . . . 8  |-  ( ( ( ph  ->  A. x ph )  /\  ( ch  ->  A. x ch )
)  ->  ( ( ph  /\  ch )  -> 
( A. x ph  /\ 
A. x ch )
) )
1311, 12syl 14 . . . . . . 7  |-  ( ph  ->  ( ( ph  /\  ch )  ->  ( A. x ph  /\  A. x ch ) ) )
14 19.26 1474 . . . . . . 7  |-  ( A. x ( ph  /\  ch )  <->  ( A. x ph  /\  A. x ch ) )
1513, 14syl6ibr 161 . . . . . 6  |-  ( ph  ->  ( ( ph  /\  ch )  ->  A. x
( ph  /\  ch )
) )
1615anabsi5 574 . . . . 5  |-  ( (
ph  /\  ch )  ->  A. x ( ph  /\ 
ch ) )
17 idd 21 . . . . . . . 8  |-  ( ch 
->  ( x  =  y  ->  x  =  y ) )
1817a1i 9 . . . . . . 7  |-  ( ph  ->  ( ch  ->  (
x  =  y  ->  x  =  y )
) )
1918imp 123 . . . . . 6  |-  ( (
ph  /\  ch )  ->  ( x  =  y  ->  x  =  y ) )
20 biimpr 129 . . . . . . . . 9  |-  ( ( ps  <->  ch )  ->  ( ch  ->  ps ) )
2120imim2i 12 . . . . . . . 8  |-  ( ( x  =  y  -> 
( ps  <->  ch )
)  ->  ( x  =  y  ->  ( ch 
->  ps ) ) )
22 pm2.04 82 . . . . . . . 8  |-  ( ( x  =  y  -> 
( ch  ->  ps ) )  ->  ( ch  ->  ( x  =  y  ->  ps )
) )
233, 21, 223syl 17 . . . . . . 7  |-  ( ph  ->  ( ch  ->  (
x  =  y  ->  ps ) ) )
2423imp 123 . . . . . 6  |-  ( (
ph  /\  ch )  ->  ( x  =  y  ->  ps ) )
2519, 24jcad 305 . . . . 5  |-  ( (
ph  /\  ch )  ->  ( x  =  y  ->  ( x  =  y  /\  ps )
) )
2616, 25eximdh 1604 . . . 4  |-  ( (
ph  /\  ch )  ->  ( E. x  x  =  y  ->  E. x
( x  =  y  /\  ps ) ) )
279, 26mpi 15 . . 3  |-  ( (
ph  /\  ch )  ->  E. x ( x  =  y  /\  ps ) )
2827ex 114 . 2  |-  ( ph  ->  ( ch  ->  E. x
( x  =  y  /\  ps ) ) )
298, 28impbid 128 1  |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  cbvexdh  1919
  Copyright terms: Public domain W3C validator