Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsexd Unicode version

Theorem equsexd 1708
 Description: Deduction form of equsex 1707. (Contributed by Jim Kingdon, 29-Dec-2017.)
Hypotheses
Ref Expression
equsexd.1
equsexd.2
equsexd.3
Assertion
Ref Expression
equsexd

Proof of Theorem equsexd
StepHypRef Expression
1 equsexd.1 . . 3
2 equsexd.2 . . 3
3 equsexd.3 . . . 4
4 bi1 117 . . . . 5
54imim2i 12 . . . 4
6 pm3.31 260 . . . 4
73, 5, 63syl 17 . . 3
81, 2, 7exlimd2 1575 . 2
9 a9e 1675 . . . 4
101a1i 9 . . . . . . . . 9
1110, 2jca 304 . . . . . . . 8
12 anim12 342 . . . . . . . 8
1311, 12syl 14 . . . . . . 7
14 19.26 1458 . . . . . . 7
1513, 14syl6ibr 161 . . . . . 6
1615anabsi5 569 . . . . 5
17 idd 21 . . . . . . . 8
1817a1i 9 . . . . . . 7
1918imp 123 . . . . . 6
20 bi2 129 . . . . . . . . 9
2120imim2i 12 . . . . . . . 8
22 pm2.04 82 . . . . . . . 8
233, 21, 223syl 17 . . . . . . 7
2423imp 123 . . . . . 6
2519, 24jcad 305 . . . . 5
2616, 25eximdh 1591 . . . 4
279, 26mpi 15 . . 3
2827ex 114 . 2
298, 28impbid 128 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104  wal 1330   wceq 1332  wex 1469 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1488  ax-i9 1511  ax-ial 1515 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  cbvexdh  1899
 Copyright terms: Public domain W3C validator