ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanre Unicode version

Theorem rexanre 11184
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Distinct variable groups:    j, k, A    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanre
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ph ) )
32ralimi 2533 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ph ) )
43reximi 2567 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ps )
)
76ralimi 2533 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ps )
)
87reximi 2567 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)
94, 8jca 304 . 2  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) )
10 breq1 3992 . . . . . . . 8  |-  ( j  =  x  ->  (
j  <_  k  <->  x  <_  k ) )
1110imbi1d 230 . . . . . . 7  |-  ( j  =  x  ->  (
( j  <_  k  ->  ph )  <->  ( x  <_  k  ->  ph ) ) )
1211ralbidv 2470 . . . . . 6  |-  ( j  =  x  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  <->  A. k  e.  A  ( x  <_  k  ->  ph ) ) )
1312cbvrexv 2697 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. x  e.  RR  A. k  e.  A  ( x  <_  k  ->  ph ) )
14 breq1 3992 . . . . . . . 8  |-  ( j  =  y  ->  (
j  <_  k  <->  y  <_  k ) )
1514imbi1d 230 . . . . . . 7  |-  ( j  =  y  ->  (
( j  <_  k  ->  ps )  <->  ( y  <_  k  ->  ps )
) )
1615ralbidv 2470 . . . . . 6  |-  ( j  =  y  ->  ( A. k  e.  A  ( j  <_  k  ->  ps )  <->  A. k  e.  A  ( y  <_  k  ->  ps )
) )
1716cbvrexv 2697 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps )  <->  E. y  e.  RR  A. k  e.  A  ( y  <_  k  ->  ps ) )
1813, 17anbi12i 457 . . . 4  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
19 reeanv 2639 . . . 4  |-  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
2018, 19bitr4i 186 . . 3  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
21 maxcl 11174 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
2221adantl 275 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
23 r19.26 2596 . . . . . 6  |-  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  <->  ( A. k  e.  A  (
x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
24 anim12 342 . . . . . . . 8  |-  ( ( ( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  (
( x  <_  k  /\  y  <_  k )  ->  ( ph  /\  ps ) ) )
25 simplrl 530 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  x  e.  RR )
26 simplrr 531 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  y  e.  RR )
27 simpl 108 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A  C_  RR )
2827sselda 3147 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  k  e.  RR )
29 maxleastb 11178 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  k  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3025, 26, 28, 29syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3130imbi1d 230 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) )  <-> 
( ( x  <_ 
k  /\  y  <_  k )  ->  ( ph  /\ 
ps ) ) ) )
3224, 31syl5ibr 155 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( ( x  <_ 
k  ->  ph )  /\  ( y  <_  k  ->  ps ) )  -> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3332ralimdva 2537 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3423, 33syl5bir 152 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
35 breq1 3992 . . . . . . . 8  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( j  <_ 
k  <->  sup ( { x ,  y } ,  RR ,  <  )  <_ 
k ) )
3635imbi1d 230 . . . . . . 7  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( ( j  <_  k  ->  ( ph  /\  ps ) )  <-> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3736ralbidv 2470 . . . . . 6  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( ph  /\ 
ps ) )  <->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3837rspcev 2834 . . . . 5  |-  ( ( sup ( { x ,  y } ,  RR ,  <  )  e.  RR  /\  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) )
3922, 34, 38syl6an 1427 . . . 4  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4039rexlimdvva 2595 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4120, 40syl5bi 151 . 2  |-  ( A 
C_  RR  ->  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
429, 41impbid2 142 1  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   {cpr 3584   class class class wbr 3989   supcsup 6959   RRcr 7773    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator