ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanre Unicode version

Theorem rexanre 11024
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Distinct variable groups:    j, k, A    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanre
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ph ) )
32ralimi 2498 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ph ) )
43reximi 2532 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ps )
)
76ralimi 2498 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ps )
)
87reximi 2532 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)
94, 8jca 304 . 2  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) )
10 breq1 3940 . . . . . . . 8  |-  ( j  =  x  ->  (
j  <_  k  <->  x  <_  k ) )
1110imbi1d 230 . . . . . . 7  |-  ( j  =  x  ->  (
( j  <_  k  ->  ph )  <->  ( x  <_  k  ->  ph ) ) )
1211ralbidv 2438 . . . . . 6  |-  ( j  =  x  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  <->  A. k  e.  A  ( x  <_  k  ->  ph ) ) )
1312cbvrexv 2658 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. x  e.  RR  A. k  e.  A  ( x  <_  k  ->  ph ) )
14 breq1 3940 . . . . . . . 8  |-  ( j  =  y  ->  (
j  <_  k  <->  y  <_  k ) )
1514imbi1d 230 . . . . . . 7  |-  ( j  =  y  ->  (
( j  <_  k  ->  ps )  <->  ( y  <_  k  ->  ps )
) )
1615ralbidv 2438 . . . . . 6  |-  ( j  =  y  ->  ( A. k  e.  A  ( j  <_  k  ->  ps )  <->  A. k  e.  A  ( y  <_  k  ->  ps )
) )
1716cbvrexv 2658 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps )  <->  E. y  e.  RR  A. k  e.  A  ( y  <_  k  ->  ps ) )
1813, 17anbi12i 456 . . . 4  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
19 reeanv 2603 . . . 4  |-  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
2018, 19bitr4i 186 . . 3  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
21 maxcl 11014 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
2221adantl 275 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
23 r19.26 2561 . . . . . 6  |-  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  <->  ( A. k  e.  A  (
x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
24 anim12 342 . . . . . . . 8  |-  ( ( ( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  (
( x  <_  k  /\  y  <_  k )  ->  ( ph  /\  ps ) ) )
25 simplrl 525 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  x  e.  RR )
26 simplrr 526 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  y  e.  RR )
27 simpl 108 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A  C_  RR )
2827sselda 3102 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  k  e.  RR )
29 maxleastb 11018 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  k  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3025, 26, 28, 29syl3anc 1217 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3130imbi1d 230 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) )  <-> 
( ( x  <_ 
k  /\  y  <_  k )  ->  ( ph  /\ 
ps ) ) ) )
3224, 31syl5ibr 155 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( ( x  <_ 
k  ->  ph )  /\  ( y  <_  k  ->  ps ) )  -> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3332ralimdva 2502 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3423, 33syl5bir 152 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
35 breq1 3940 . . . . . . . 8  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( j  <_ 
k  <->  sup ( { x ,  y } ,  RR ,  <  )  <_ 
k ) )
3635imbi1d 230 . . . . . . 7  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( ( j  <_  k  ->  ( ph  /\  ps ) )  <-> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3736ralbidv 2438 . . . . . 6  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( ph  /\ 
ps ) )  <->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3837rspcev 2793 . . . . 5  |-  ( ( sup ( { x ,  y } ,  RR ,  <  )  e.  RR  /\  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) )
3922, 34, 38syl6an 1411 . . . 4  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4039rexlimdvva 2560 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4120, 40syl5bi 151 . 2  |-  ( A 
C_  RR  ->  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
429, 41impbid2 142 1  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   {cpr 3533   class class class wbr 3937   supcsup 6877   RRcr 7643    < clt 7824    <_ cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator