ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanre Unicode version

Theorem rexanre 11004
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Distinct variable groups:    j, k, A    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanre
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ph ) )
32ralimi 2495 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ph ) )
43reximi 2529 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ps )
)
76ralimi 2495 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ps )
)
87reximi 2529 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)
94, 8jca 304 . 2  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) )
10 breq1 3932 . . . . . . . 8  |-  ( j  =  x  ->  (
j  <_  k  <->  x  <_  k ) )
1110imbi1d 230 . . . . . . 7  |-  ( j  =  x  ->  (
( j  <_  k  ->  ph )  <->  ( x  <_  k  ->  ph ) ) )
1211ralbidv 2437 . . . . . 6  |-  ( j  =  x  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  <->  A. k  e.  A  ( x  <_  k  ->  ph ) ) )
1312cbvrexv 2655 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. x  e.  RR  A. k  e.  A  ( x  <_  k  ->  ph ) )
14 breq1 3932 . . . . . . . 8  |-  ( j  =  y  ->  (
j  <_  k  <->  y  <_  k ) )
1514imbi1d 230 . . . . . . 7  |-  ( j  =  y  ->  (
( j  <_  k  ->  ps )  <->  ( y  <_  k  ->  ps )
) )
1615ralbidv 2437 . . . . . 6  |-  ( j  =  y  ->  ( A. k  e.  A  ( j  <_  k  ->  ps )  <->  A. k  e.  A  ( y  <_  k  ->  ps )
) )
1716cbvrexv 2655 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps )  <->  E. y  e.  RR  A. k  e.  A  ( y  <_  k  ->  ps ) )
1813, 17anbi12i 455 . . . 4  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
19 reeanv 2600 . . . 4  |-  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
2018, 19bitr4i 186 . . 3  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
21 maxcl 10994 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
2221adantl 275 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
23 r19.26 2558 . . . . . 6  |-  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  <->  ( A. k  e.  A  (
x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
24 anim12 341 . . . . . . . 8  |-  ( ( ( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  (
( x  <_  k  /\  y  <_  k )  ->  ( ph  /\  ps ) ) )
25 simplrl 524 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  x  e.  RR )
26 simplrr 525 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  y  e.  RR )
27 simpl 108 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A  C_  RR )
2827sselda 3097 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  k  e.  RR )
29 maxleastb 10998 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  k  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3025, 26, 28, 29syl3anc 1216 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3130imbi1d 230 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) )  <-> 
( ( x  <_ 
k  /\  y  <_  k )  ->  ( ph  /\ 
ps ) ) ) )
3224, 31syl5ibr 155 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( ( x  <_ 
k  ->  ph )  /\  ( y  <_  k  ->  ps ) )  -> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3332ralimdva 2499 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3423, 33syl5bir 152 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
35 breq1 3932 . . . . . . . 8  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( j  <_ 
k  <->  sup ( { x ,  y } ,  RR ,  <  )  <_ 
k ) )
3635imbi1d 230 . . . . . . 7  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( ( j  <_  k  ->  ( ph  /\  ps ) )  <-> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3736ralbidv 2437 . . . . . 6  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( ph  /\ 
ps ) )  <->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3837rspcev 2789 . . . . 5  |-  ( ( sup ( { x ,  y } ,  RR ,  <  )  e.  RR  /\  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) )
3922, 34, 38syl6an 1410 . . . 4  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4039rexlimdvva 2557 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4120, 40syl5bi 151 . 2  |-  ( A 
C_  RR  ->  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
429, 41impbid2 142 1  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   {cpr 3528   class class class wbr 3929   supcsup 6869   RRcr 7631    < clt 7812    <_ cle 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator