Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reusv3i | Unicode version |
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
Ref | Expression |
---|---|
reusv3.1 | |
reusv3.2 |
Ref | Expression |
---|---|
reusv3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reusv3.1 | . . . . . 6 | |
2 | reusv3.2 | . . . . . . 7 | |
3 | 2 | eqeq2d 2182 | . . . . . 6 |
4 | 1, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | cbvralv 2696 | . . . 4 |
6 | 5 | biimpi 119 | . . 3 |
7 | raaanv 3522 | . . . 4 | |
8 | anim12 342 | . . . . . . 7 | |
9 | eqtr2 2189 | . . . . . . 7 | |
10 | 8, 9 | syl6 33 | . . . . . 6 |
11 | 10 | ralimi 2533 | . . . . 5 |
12 | 11 | ralimi 2533 | . . . 4 |
13 | 7, 12 | sylbir 134 | . . 3 |
14 | 6, 13 | mpdan 419 | . 2 |
15 | 14 | rexlimivw 2583 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wral 2448 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 |
This theorem is referenced by: reusv3 4445 |
Copyright terms: Public domain | W3C validator |