| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reusv3i | Unicode version | ||
| Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| Ref | Expression |
|---|---|
| reusv3.1 |
|
| reusv3.2 |
|
| Ref | Expression |
|---|---|
| reusv3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 |
. . . . . 6
| |
| 2 | reusv3.2 |
. . . . . . 7
| |
| 3 | 2 | eqeq2d 2241 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | cbvralv 2765 |
. . . 4
|
| 6 | 5 | biimpi 120 |
. . 3
|
| 7 | raaanv 3598 |
. . . 4
| |
| 8 | anim12 344 |
. . . . . . 7
| |
| 9 | eqtr2 2248 |
. . . . . . 7
| |
| 10 | 8, 9 | syl6 33 |
. . . . . 6
|
| 11 | 10 | ralimi 2593 |
. . . . 5
|
| 12 | 11 | ralimi 2593 |
. . . 4
|
| 13 | 7, 12 | sylbir 135 |
. . 3
|
| 14 | 6, 13 | mpdan 421 |
. 2
|
| 15 | 14 | rexlimivw 2644 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: reusv3 4551 |
| Copyright terms: Public domain | W3C validator |