| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reusv3i | Unicode version | ||
| Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| Ref | Expression |
|---|---|
| reusv3.1 |
|
| reusv3.2 |
|
| Ref | Expression |
|---|---|
| reusv3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 |
. . . . . 6
| |
| 2 | reusv3.2 |
. . . . . . 7
| |
| 3 | 2 | eqeq2d 2208 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | cbvralv 2729 |
. . . 4
|
| 6 | 5 | biimpi 120 |
. . 3
|
| 7 | raaanv 3557 |
. . . 4
| |
| 8 | anim12 344 |
. . . . . . 7
| |
| 9 | eqtr2 2215 |
. . . . . . 7
| |
| 10 | 8, 9 | syl6 33 |
. . . . . 6
|
| 11 | 10 | ralimi 2560 |
. . . . 5
|
| 12 | 11 | ralimi 2560 |
. . . 4
|
| 13 | 7, 12 | sylbir 135 |
. . 3
|
| 14 | 6, 13 | mpdan 421 |
. 2
|
| 15 | 14 | rexlimivw 2610 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: reusv3 4495 |
| Copyright terms: Public domain | W3C validator |