ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv3i Unicode version

Theorem reusv3i 4388
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
Hypotheses
Ref Expression
reusv3.1  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
reusv3.2  |-  ( y  =  z  ->  C  =  D )
Assertion
Ref Expression
reusv3i  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Distinct variable groups:    x, y, z, B    x, C, z   
x, D, y    ph, x, z    ps, x, y
Allowed substitution hints:    ph( y)    ps( z)    A( x, y, z)    C( y)    D( z)

Proof of Theorem reusv3i
StepHypRef Expression
1 reusv3.1 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
2 reusv3.2 . . . . . . 7  |-  ( y  =  z  ->  C  =  D )
32eqeq2d 2152 . . . . . 6  |-  ( y  =  z  ->  (
x  =  C  <->  x  =  D ) )
41, 3imbi12d 233 . . . . 5  |-  ( y  =  z  ->  (
( ph  ->  x  =  C )  <->  ( ps  ->  x  =  D ) ) )
54cbvralv 2657 . . . 4  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  <->  A. z  e.  B  ( ps  ->  x  =  D ) )
65biimpi 119 . . 3  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. z  e.  B  ( ps  ->  x  =  D ) )
7 raaanv 3475 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) ) )
8 anim12 342 . . . . . . 7  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  ( x  =  C  /\  x  =  D ) ) )
9 eqtr2 2159 . . . . . . 7  |-  ( ( x  =  C  /\  x  =  D )  ->  C  =  D )
108, 9syl6 33 . . . . . 6  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  C  =  D ) )
1110ralimi 2498 . . . . 5  |-  ( A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1211ralimi 2498 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
137, 12sylbir 134 . . 3  |-  ( ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
146, 13mpdan 418 . 2  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1514rexlimivw 2548 1  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   A.wral 2417   E.wrex 2418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423
This theorem is referenced by:  reusv3  4389
  Copyright terms: Public domain W3C validator