Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc Unicode version

Theorem bdcsuc 13772
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc  |- BOUNDED  suc  x

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 13740 . . 3  |- BOUNDED  x
2 bdcsn 13762 . . 3  |- BOUNDED  { x }
31, 2bdcun 13754 . 2  |- BOUNDED  ( x  u.  {
x } )
4 df-suc 4349 . 2  |-  suc  x  =  ( x  u. 
{ x } )
53, 4bdceqir 13736 1  |- BOUNDED  suc  x
Colors of variables: wff set class
Syntax hints:    u. cun 3114   {csn 3576   suc csuc 4343  BOUNDED wbdc 13732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13705  ax-bdor 13708  ax-bdeq 13712  ax-bdel 13713  ax-bdsb 13714
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-un 3120  df-sn 3582  df-suc 4349  df-bdc 13733
This theorem is referenced by:  bdeqsuc  13773
  Copyright terms: Public domain W3C validator