Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc Unicode version

Theorem bdcsuc 16243
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc  |- BOUNDED  suc  x

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 16211 . . 3  |- BOUNDED  x
2 bdcsn 16233 . . 3  |- BOUNDED  { x }
31, 2bdcun 16225 . 2  |- BOUNDED  ( x  u.  {
x } )
4 df-suc 4462 . 2  |-  suc  x  =  ( x  u. 
{ x } )
53, 4bdceqir 16207 1  |- BOUNDED  suc  x
Colors of variables: wff set class
Syntax hints:    u. cun 3195   {csn 3666   suc csuc 4456  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdor 16179  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-sn 3672  df-suc 4462  df-bdc 16204
This theorem is referenced by:  bdeqsuc  16244
  Copyright terms: Public domain W3C validator