Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr Unicode version

Theorem bdcpr 13906
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr  |- BOUNDED  { x ,  y }

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 13905 . . 3  |- BOUNDED  { x }
2 bdcsn 13905 . . 3  |- BOUNDED  { y }
31, 2bdcun 13897 . 2  |- BOUNDED  ( { x }  u.  { y } )
4 df-pr 3590 . 2  |-  { x ,  y }  =  ( { x }  u.  { y } )
53, 4bdceqir 13879 1  |- BOUNDED  { x ,  y }
Colors of variables: wff set class
Syntax hints:    u. cun 3119   {csn 3583   {cpr 3584  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdor 13851  ax-bdeq 13855  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-un 3125  df-sn 3589  df-pr 3590  df-bdc 13876
This theorem is referenced by:  bdctp  13907  bdop  13910
  Copyright terms: Public domain W3C validator