Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr Unicode version

Theorem bdcpr 15517
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr  |- BOUNDED  { x ,  y }

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 15516 . . 3  |- BOUNDED  { x }
2 bdcsn 15516 . . 3  |- BOUNDED  { y }
31, 2bdcun 15508 . 2  |- BOUNDED  ( { x }  u.  { y } )
4 df-pr 3629 . 2  |-  { x ,  y }  =  ( { x }  u.  { y } )
53, 4bdceqir 15490 1  |- BOUNDED  { x ,  y }
Colors of variables: wff set class
Syntax hints:    u. cun 3155   {csn 3622   {cpr 3623  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdor 15462  ax-bdeq 15466  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-un 3161  df-sn 3628  df-pr 3629  df-bdc 15487
This theorem is referenced by:  bdctp  15518  bdop  15521
  Copyright terms: Public domain W3C validator