Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn Unicode version

Theorem bdcsn 16005
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn  |- BOUNDED  { x }

Proof of Theorem bdcsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 15955 . . 3  |- BOUNDED  y  =  x
21bdcab 15984 . 2  |- BOUNDED  { y  |  y  =  x }
3 df-sn 3649 . 2  |-  { x }  =  { y  |  y  =  x }
42, 3bdceqir 15979 1  |- BOUNDED  { x }
Colors of variables: wff set class
Syntax hints:   {cab 2193   {csn 3643  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdeq 15955  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-sn 3649  df-bdc 15976
This theorem is referenced by:  bdcpr  16006  bdctp  16007  bdvsn  16009  bdcsuc  16015
  Copyright terms: Public domain W3C validator