Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn Unicode version

Theorem bdcsn 13752
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn  |- BOUNDED  { x }

Proof of Theorem bdcsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 13702 . . 3  |- BOUNDED  y  =  x
21bdcab 13731 . 2  |- BOUNDED  { y  |  y  =  x }
3 df-sn 3582 . 2  |-  { x }  =  { y  |  y  =  x }
42, 3bdceqir 13726 1  |- BOUNDED  { x }
Colors of variables: wff set class
Syntax hints:   {cab 2151   {csn 3576  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695  ax-bdeq 13702  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-sn 3582  df-bdc 13723
This theorem is referenced by:  bdcpr  13753  bdctp  13754  bdvsn  13756  bdcsuc  13762
  Copyright terms: Public domain W3C validator