Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn Unicode version

Theorem bdcsn 14707
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn  |- BOUNDED  { x }

Proof of Theorem bdcsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 14657 . . 3  |- BOUNDED  y  =  x
21bdcab 14686 . 2  |- BOUNDED  { y  |  y  =  x }
3 df-sn 3600 . 2  |-  { x }  =  { y  |  y  =  x }
42, 3bdceqir 14681 1  |- BOUNDED  { x }
Colors of variables: wff set class
Syntax hints:   {cab 2163   {csn 3594  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159  ax-bd0 14650  ax-bdeq 14657  ax-bdsb 14659
This theorem depends on definitions:  df-bi 117  df-clab 2164  df-cleq 2170  df-clel 2173  df-sn 3600  df-bdc 14678
This theorem is referenced by:  bdcpr  14708  bdctp  14709  bdvsn  14711  bdcsuc  14717
  Copyright terms: Public domain W3C validator