Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version |
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdop | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdvsn 13756 | . . . 4 BOUNDED | |
2 | bdcpr 13753 | . . . . . . 7 BOUNDED | |
3 | 2 | bdss 13746 | . . . . . 6 BOUNDED |
4 | ax-bdel 13703 | . . . . . . . 8 BOUNDED | |
5 | ax-bdel 13703 | . . . . . . . 8 BOUNDED | |
6 | 4, 5 | ax-bdan 13697 | . . . . . . 7 BOUNDED |
7 | vex 2729 | . . . . . . . . . . 11 | |
8 | 7 | prid1 3682 | . . . . . . . . . 10 |
9 | ssel 3136 | . . . . . . . . . 10 | |
10 | 8, 9 | mpi 15 | . . . . . . . . 9 |
11 | vex 2729 | . . . . . . . . . . 11 | |
12 | 11 | prid2 3683 | . . . . . . . . . 10 |
13 | ssel 3136 | . . . . . . . . . 10 | |
14 | 12, 13 | mpi 15 | . . . . . . . . 9 |
15 | 10, 14 | jca 304 | . . . . . . . 8 |
16 | prssi 3731 | . . . . . . . 8 | |
17 | 15, 16 | impbii 125 | . . . . . . 7 |
18 | 6, 17 | bd0r 13707 | . . . . . 6 BOUNDED |
19 | 3, 18 | ax-bdan 13697 | . . . . 5 BOUNDED |
20 | eqss 3157 | . . . . 5 | |
21 | 19, 20 | bd0r 13707 | . . . 4 BOUNDED |
22 | 1, 21 | ax-bdor 13698 | . . 3 BOUNDED |
23 | vex 2729 | . . . 4 | |
24 | 23, 7, 11 | elop 4209 | . . 3 |
25 | 22, 24 | bd0r 13707 | . 2 BOUNDED |
26 | 25 | bdelir 13729 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 wss 3116 csn 3576 cpr 3577 cop 3579 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdan 13697 ax-bdor 13698 ax-bdal 13700 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-bdc 13723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |