![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version |
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdop |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdvsn 15366 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bdcpr 15363 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bdss 15356 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ax-bdel 15313 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
5 | ax-bdel 15313 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-bdan 15307 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | vex 2763 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() | |
8 | 7 | prid1 3724 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | ssel 3173 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | mpi 15 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | vex 2763 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() | |
12 | 11 | prid2 3725 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | ssel 3173 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | mpi 15 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 10, 14 | jca 306 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | prssi 3776 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | impbii 126 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 6, 17 | bd0r 15317 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 3, 18 | ax-bdan 15307 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | eqss 3194 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 19, 20 | bd0r 15317 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 1, 21 | ax-bdor 15308 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | vex 2763 |
. . . 4
![]() ![]() ![]() ![]() | |
24 | 23, 7, 11 | elop 4260 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | bd0r 15317 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 25 | bdelir 15339 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15305 ax-bdan 15307 ax-bdor 15308 ax-bdal 15310 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-bdc 15333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |