| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version | ||
| Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| bdop | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdvsn 15520 | 
. . . 4
 | |
| 2 | bdcpr 15517 | 
. . . . . . 7
 | |
| 3 | 2 | bdss 15510 | 
. . . . . 6
 | 
| 4 | ax-bdel 15467 | 
. . . . . . . 8
 | |
| 5 | ax-bdel 15467 | 
. . . . . . . 8
 | |
| 6 | 4, 5 | ax-bdan 15461 | 
. . . . . . 7
 | 
| 7 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | prid1 3728 | 
. . . . . . . . . 10
 | 
| 9 | ssel 3177 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | mpi 15 | 
. . . . . . . . 9
 | 
| 11 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | prid2 3729 | 
. . . . . . . . . 10
 | 
| 13 | ssel 3177 | 
. . . . . . . . . 10
 | |
| 14 | 12, 13 | mpi 15 | 
. . . . . . . . 9
 | 
| 15 | 10, 14 | jca 306 | 
. . . . . . . 8
 | 
| 16 | prssi 3780 | 
. . . . . . . 8
 | |
| 17 | 15, 16 | impbii 126 | 
. . . . . . 7
 | 
| 18 | 6, 17 | bd0r 15471 | 
. . . . . 6
 | 
| 19 | 3, 18 | ax-bdan 15461 | 
. . . . 5
 | 
| 20 | eqss 3198 | 
. . . . 5
 | |
| 21 | 19, 20 | bd0r 15471 | 
. . . 4
 | 
| 22 | 1, 21 | ax-bdor 15462 | 
. . 3
 | 
| 23 | vex 2766 | 
. . . 4
 | |
| 24 | 23, 7, 11 | elop 4264 | 
. . 3
 | 
| 25 | 22, 24 | bd0r 15471 | 
. 2
 | 
| 26 | 25 | bdelir 15493 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdan 15461 ax-bdor 15462 ax-bdal 15464 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-bdc 15487 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |