| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version | ||
| Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdvsn 15604 |
. . . 4
| |
| 2 | bdcpr 15601 |
. . . . . . 7
| |
| 3 | 2 | bdss 15594 |
. . . . . 6
|
| 4 | ax-bdel 15551 |
. . . . . . . 8
| |
| 5 | ax-bdel 15551 |
. . . . . . . 8
| |
| 6 | 4, 5 | ax-bdan 15545 |
. . . . . . 7
|
| 7 | vex 2766 |
. . . . . . . . . . 11
| |
| 8 | 7 | prid1 3729 |
. . . . . . . . . 10
|
| 9 | ssel 3178 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | mpi 15 |
. . . . . . . . 9
|
| 11 | vex 2766 |
. . . . . . . . . . 11
| |
| 12 | 11 | prid2 3730 |
. . . . . . . . . 10
|
| 13 | ssel 3178 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpi 15 |
. . . . . . . . 9
|
| 15 | 10, 14 | jca 306 |
. . . . . . . 8
|
| 16 | prssi 3781 |
. . . . . . . 8
| |
| 17 | 15, 16 | impbii 126 |
. . . . . . 7
|
| 18 | 6, 17 | bd0r 15555 |
. . . . . 6
|
| 19 | 3, 18 | ax-bdan 15545 |
. . . . 5
|
| 20 | eqss 3199 |
. . . . 5
| |
| 21 | 19, 20 | bd0r 15555 |
. . . 4
|
| 22 | 1, 21 | ax-bdor 15546 |
. . 3
|
| 23 | vex 2766 |
. . . 4
| |
| 24 | 23, 7, 11 | elop 4265 |
. . 3
|
| 25 | 22, 24 | bd0r 15555 |
. 2
|
| 26 | 25 | bdelir 15577 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15543 ax-bdan 15545 ax-bdor 15546 ax-bdal 15548 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-bdc 15571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |