| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version | ||
| Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdvsn 15814 |
. . . 4
| |
| 2 | bdcpr 15811 |
. . . . . . 7
| |
| 3 | 2 | bdss 15804 |
. . . . . 6
|
| 4 | ax-bdel 15761 |
. . . . . . . 8
| |
| 5 | ax-bdel 15761 |
. . . . . . . 8
| |
| 6 | 4, 5 | ax-bdan 15755 |
. . . . . . 7
|
| 7 | vex 2775 |
. . . . . . . . . . 11
| |
| 8 | 7 | prid1 3739 |
. . . . . . . . . 10
|
| 9 | ssel 3187 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | mpi 15 |
. . . . . . . . 9
|
| 11 | vex 2775 |
. . . . . . . . . . 11
| |
| 12 | 11 | prid2 3740 |
. . . . . . . . . 10
|
| 13 | ssel 3187 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpi 15 |
. . . . . . . . 9
|
| 15 | 10, 14 | jca 306 |
. . . . . . . 8
|
| 16 | prssi 3791 |
. . . . . . . 8
| |
| 17 | 15, 16 | impbii 126 |
. . . . . . 7
|
| 18 | 6, 17 | bd0r 15765 |
. . . . . 6
|
| 19 | 3, 18 | ax-bdan 15755 |
. . . . 5
|
| 20 | eqss 3208 |
. . . . 5
| |
| 21 | 19, 20 | bd0r 15765 |
. . . 4
|
| 22 | 1, 21 | ax-bdor 15756 |
. . 3
|
| 23 | vex 2775 |
. . . 4
| |
| 24 | 23, 7, 11 | elop 4275 |
. . 3
|
| 25 | 22, 24 | bd0r 15765 |
. 2
|
| 26 | 25 | bdelir 15787 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-bd0 15753 ax-bdan 15755 ax-bdor 15756 ax-bdal 15758 ax-bdeq 15760 ax-bdel 15761 ax-bdsb 15762 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-bdc 15781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |